Homework II

1. [15 points]

In a round-robin tournament (e.g., tennis, chess, etc.) each participant plays every other participant one match. Use induction to show that in a round-robin tournament with $n \geq 2$ participants, the number of matches, $R R(n)$, is $R R(n)=\frac{n \star(n-1)}{2}$.

2. [15 points]

Problem 11, p. 132 of our text (note that this problem pertains to the "fpes" defined on page 15).

3. [20 points]

Prove by induction that for all natural numbers $n, 0 \cdot 1+1 \cdot 2+2 \cdot 3+\ldots+n \cdot(n+1)=$

$$
\prod_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{k} \cdot(\mathrm{k}+1)=\frac{2 \mathrm{n}^{3}+6 \mathrm{n}^{2}+4 \mathrm{n}}{6}
$$

4. [20 points]

Using lists as defined on p .145 of our text, we define a function 'cat' taking two lists as arguments and returning a list as follows (for all items a and lists x and y):

$$
\begin{aligned}
& \operatorname{cat}([], y)=y \\
& \operatorname{cat}(a . x, y)=\operatorname{a.cat}(x, y) .
\end{aligned}
$$

Prove that $\operatorname{cat}\left(\left[a_{1}, a_{2}, \ldots, a_{n}\right],\left[b_{1}, b_{2}, \ldots, b_{m}\right]\right)=\left[a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m}\right]$ for all $\mathrm{m}, \mathrm{n} \geq 0$.

5. [5 points]

Problem 13, p. 243 of our text.
6. [20 points]

Problem 15, p. 243 of our text.

