## Homework I

## 1. [15 points]

Take character set $C=\{a, b\}$, and languages $S=\{b, a b a\}$ and $T=\{\square, b b\}$.
(a) what is the language $T^{2}$ ?
(b) what is the language $T^{*}$ ?
(c) what is the language $S \cdot T^{*}$ ? [note: this means $S \cdot\left(T^{*}\right)$ not $(S \cdot T)^{*}$ ]
(d) what is the language $(S \cdot T)^{*}$ ?
(e) what is the language $\left(\mathrm{S}^{*}\right)^{*}$ ?

## 2. [20 points]

Take character set $C=\{a, b\}$, and consider languages $R=\left\{a^{2}\right\}^{*}$ (infinite -- all even nos. 'a'), $S=\{a\} \cdot\left\{a^{2}\right\}^{*}$ (infinite -- all odd nos. 'a'). Justify your answers to each of the following questions:
(a) what is the language $R \square S$ ?
(b) what is the language $R \cdot S$ ?
(c) what is the language $\mathrm{R}^{*}$ ?
(d) what is the language $S^{*}$ ?

## 3. [30 points]

For $C=\{a, b\}$, write a regular expression that describes each of the languages below, and justify that your answer describes exactly the required strings -these are set equality demonstrations, every required string must be described by your regular expression, and no other string can be.
(a) $\left\{\square a^{3}, a^{5}, a^{6}, a^{9}, a^{10}, a^{12}, a^{15}, \ldots\right\}-$ all and only strings of 'a's whose length is either a multiple of 3 or a multiple of 5
(b) all and only strings that either (i) begin with 'aa' and have no 'a' following a 'b', or (ii) begin with 'bb' and have no 'b' following an 'a'
(c) $\left\{a, a^{2}, a^{4}, a^{5}, a^{7}, a^{8}, \ldots\right\}-$ all and only strings of 'a's whose length is not a multiple of 3 .

## 4. [15 points]

For the BNF definition $\mathrm{X}::=\mathrm{b} \mid$ aaaXa I aaXaa, determine whether or not the string below is in $L(X)$, and justify your answer - either a derivation if yes, or what makes it impossible if no.
(a) $a^{7} b a^{5}$
(b) $a^{6} b a^{4}$
(c) $a^{8} b a^{4}$

## 5. [20 points]

Given the BNF definition $X::=\square \mid \mathrm{XaXbX}$, determine whether or not each of the following strings are in $L(X)$ and justify your answer -- either a derivation if yes, or what makes it impossible if no.
(a) aabbab
(b) abaaab
(c) abbaab
(d) aaabbb

