Homework I

1. [15 points]

Take character set C = {a, b}, and languages S = {b, aba} and T = { ϵ , bb}.

- (a) what is the language T^2 ?
- (b) what is the language T*?
- (c) what is the language $S \cdot T^*$? [note: this means $S \cdot (T^*)$ not $(S \cdot T)^*$]
- (d) what is the language (S•T)*?
- (e) what is the language $(S^*)^*$?

2. [20 points]

Take character set C = {a, b}, and consider languages R = { a^2 }* (infinite -- all even nos. 'a'), S = {a}•{ a^2 }* (infinite -- all odd nos. 'a'). Justify your answers to each of the following questions:

- (a) what is the language $R \cup S$?
- (b) what is the language R•S?
- (c) what is the language R^* ?
- (d) what is the language S^* ?

3. [30 points]

For $C = \{a, b\}$, write a regular expression that describes each of the languages below, and justify that your answer describes exactly the required strings -these are set equality demonstrations, every required string must be described by your regular expression, and *no* other string can be.

- (a) { ϵ , a^3 , a^5 , a^6 , a^9 , a^{10} , a^{12} , a^{15} , ... } -- all and only strings of 'a's whose length is either a multiple of 3 or a multiple of 5
- (b) all and only strings that either (i) begin with 'aa' and have no 'a' following a 'b', or (ii) begin with 'bb' and have no 'b' following an 'a'
- (c) {a, a², a⁴, a⁵, a⁷, a⁸, ... } -- all and only strings of 'a's whose length is not a multiple of 3.

4. [15 points]

For the BNF definition X ::= $b \mid aaaXa \mid aaXaa$, determine whether or not the string below is in L(X), and justify your answer — either a derivation if yes, or what makes it impossible if no.

(a) $a^7 b a^5$

- (b) a⁶ba⁴
- (c) a⁸ba⁴

5. [20 points]

Given the BNF definition X ::= ε I XaXbX, determine whether or not each of the following strings are in L(X) and justify your answer -- either a derivation if yes, or what makes it impossible if no.

(a) aabbab

- (b) abaaab
- (c) abbaab
- (d) aaabbb