Final Exam Study Guide
Open book/notes

Time: Monday May 8, 2:15 – 4:15 pm

Location: 114 MLH

Major topics (comprehensive):
• * logic (Diller, chaps. 3, 10)
 truth analysis and models
 proof and deduction
 consistency and completeness
• * program proving (Diller, chap. 14)
• * Z specification
 specification elements (Diller, chaps. 4, 16, 18)
 Z Library (Diller, chap. 21 augmented by chaps. 3, 5, 6 & 7)
 animation/Miranda/Zans (Diller, chap. 19)
• * algebraic specification (Guttag/Horowitz/Musser & Horabeek/Lewi)
 initial vs. final algebra semantics
 consistency and sufficient completeness
 animation/Miranda
 errors (i.e., exceptions) and order-sorted algebras
• * statecharts (Harel/Gery & chap 2 of Day)

Final Exam Study Questions

Since the exam is comprehensive, one useful step is to review the midterm and homework problems. Of course, timed exam questions are necessarily formulated to have much briefer answers than homework problems, but the homework is topically representative. A few additional selected problems appear below.

Below is a program fragment to compute the index J of a minimum item of an array A[1..N] of numbers — this is expressed in logic as the post-condition shown. Use the Floyd-Hoare axiomatic rules to prove that the formula

\[1 \leq J \leq N \land (1 \leq L \leq N \land A[J] \leq A[L]) \]

is a loop invariant.

\{N\geq1\}
J:= 1; K:= 1;
while K<N do
begin
 K:= K+1;
end
\{1 \leq J \leq N \land (1 \leq L \leq N \land A[J] \leq A[L])\}
Both bags and sequences in Z consist of sets of ordered pairs, and therefore share basic set operations. Indicate whether each of the following is true or false, and justify your answer.

(a) for any sequences, S prefix T \iff $S \subseteq T$ (recall that the prefix relation is defined for sequences S,T: seq X as: S prefix T \iff ($\forall V$: seq X \cdot $S^V = T$)),

(b) for bags B and C, bag difference and set difference are the same, $B \setminus C = B \setminus C$.

When we illustrated “OK tests” to treat exceptional conditions on the Queue ADT (repeated below), a number of things changed. Compare in detail the ground term equivalence classes that result in the specification including exceptions with those obtained from the Queue specification of Guttag et al.
• Signature
New: \mathcal{Q} Queue
$\text{Error}_{\mathcal{Q}}$: \mathcal{Q} Queue
Add: Queue \sqcup Int \rightarrow Queue
Del: Queue \rightarrow Queue
Frt: Queue \rightarrow Int
IsNew: Queue \rightarrow Boolean
OK: Queue \rightarrow Boolean

• OK specification
OK(New) = True
OK(ErrorQue) = False
OK(Add(q,i)) = OK(q) \sqcup OK(i)

• Error-equations (this is “errors propagate” plus two additional equations)
Add(ErrorQue,i) = ErrorQue
Add(q,ErrorInt) = ErrorQue
Del(New) = ErrorQue
Del(ErrorQue) = ErrorQue
Frt(New) = ErrorInt
Frt(ErrorQue) = ErrorInt
IsNew(ErrorQue) = ErrorBool

• OK-equations
IsNew(New) = True
IsNew(Add(q,i)) = if OK(q) \sqcup OK(i)
then False else ErrorBool
Del(Add(q,i)) = if OK(q) \sqcup OK(i)
then if IsNew(q) then New else Add(Del(q),i)
else ErrorQue
Frt(Add(q,i)) = if OK(q) \sqcup OK(i)
then if IsNew(q) then i else Frt(q)
else ErrorInt
In class, we observed that the example traffic light statechart from Day’s thesis permits the configuration where both N_S and E_W lights are simultaneously green. A revision of this specification to prevent this error is presented in the figure below by changing the condition for the transition t2 in N_S from Red to Green to en(E_W.RED). With this change, transition t2 is only triggered when E_W.RED was entered in the immediately preceding step. However, this “corrected” version still fails — show what the failure is, and suggest and justify a correction.