
22C/55:181 — Spring 2004

1

Mid-term Exam
Sample Solutions

Problem 1.
In this code the upper and lower bounds for the binary search range are variables 'high'
and 'low', respectively. On each iteration, the item at the midpoint (mid) is tested. If it is
the target value x, the search ends, otherwise either the upper or lower bound is shifted
to the midpoint and another iteration is performed. When the range has collapsed to a
single item, the iteration is terminated and then the final test for x is made.

{n≥1 Ÿ "i:N • 1≤i<n fi A[i]≤A[i+1]}
low:= 1; high:= n; mid:= (n+1) div 2;
 {INV: 1≤low≤mid≤high≤n Ÿ ("i:N • 1≤i<n fi A[i]≤A[i+1])
 Ÿ "i:N • (1≤i<low ⁄ high<i≤n) fi A[i]≠x}
 while (low<high) Ÿ (x≠A[mid]) do
 begin
 if x>A[mid] ⁄ low=mid
 then low:= mid+1
 else high:= mid-1;
 mid:= (low+high) div 2;
 end;
if A[mid]=x then k:= mid else k:= 0;
{(1≤k≤n Ÿ A[k]=x) ⁄ (k=0 Ÿ "i:N • 1≤i≤n fi A[i]≠x)}

The proof rule for loops allows us to conclude the loop invariant together with the
negation of the loop guard after a loop. Therefore the conjunction of these two conditions
must be sufficient to justify the desired conclusions. Also, the loop body requires that A
is sorted, and the loop invariant is the main part of the pre/post-conditions of the loop, so
to prove using any assertion as the invariant, “A sorted” must be a part of that assertion.

This code makes some concessions to proving. To cover all cases of the index, we use
the negation of the loop guard to infer low≥high, and to force equality at the end we need
the converse in the loop invariant. One subtle place in this code occurs when high =
low+1. In this case, mid is equal to low, and if high is decremented to mid-1, the code
still works, but the invariant doesn’t since then high<low. In the code above, this situation
is detected in the if-statement within the loop by the low=mid test, and the troublesome
step is avoided.

The loop invariant asserts that variables low, mid and high are ordered, A is sorted, and
for indices outside the range low..high, item x is not present in the array. This reflects the
basic strategy of binary search — the range of indices known to exclude x is initially
empty, and half of the remaining range is added at each iteration. Therefore when the
loop terminates, using the invariant and the negated loop guard, we can infer that:

• either A[mid]=x (negated loop guard) and 1≤low≤mid≤high≤n (invariant), and k
is subsequently set accordingly,

• or x≠A[mid] so low=mid=high Ÿ "i:N • (1≤i<low ⁄ high<i≤n) fi A[i]≠x
(negated loop guard and invariant) so x is not present in A, and k will be set to 0.

22C/55:181 — Spring 2004

2

Problem 2.
The solution to this problem is expressed using ZANS in a file in our class directory.

Problem 3.
(a) For relational image, f(A1 « A2) = {x: dom f; y: ran f | (x,y)Œf Ÿ xŒA1 « A2 • y}. But

this means xŒA1 and xŒA2 so that yŒf(A1) and y Œf(A2). Therefore f(A1 « A2) Õ
f(A1) « f(A2). Note that it is immaterial that f is an injection for these steps

Conversely, since yŒf(A1) « f(A2), yŒf(A1) and yŒf(A2). And if yŒf(A1), there exists
x1ŒA1, and (x1,y)Œf. Similarly, there exists x2ŒA2, and (x2,y) Œf. But since f is an
injection, this implies that x1 = x2. Let x1 = x2 = x, and this means that xŒA1 « A2, and
hence yŒf(A1 « A2). Therefore f(A1) « f(A2) Õ f(A1 « A2), and the proof is complete.

(b) The identity fails for general partial functions. For f: {1,2} Æ| {1,2} defined by f = {(1,1),
(2,1)}, let A1 = {1} and A2 = {2}. Then f(A1 « A2) = f(∅) = ∅, while f(A1) « f(A2) = {1}
« {1} = {1}. However, f(A1 « A2) Õ f(A1) « f(A2) remains true as noted in (a) above.

Problem 4.
The solution to this problem is expressed using ZANS in a file in our class directory.

