22C/55:181

Scope of elements

In large projects, there are many components.
Most of the information required in a component
is usually local to that component and not
relevant elsewhere. On the other hand, some
information clearly must be shared on a wider
basis if different components are to be
coordinated. To the extent that it is feasible, it is
useful to avoid having irrelevant details in one
component interfere with those in another.
Hence, issues of scope are important.

The scope of an element is a set of charts in
which the element is known and can be used.
Scoping rules relate the place an element is
defined and where it is visible. The specific rules
for visibility and the resolution of reference
elements differ for different types of elements.

Charts themselves are given names, and these
names must be unique and are global. Graphical
elements — boxes, arrows, and connectors —
are defined in the chart in which they are drawn.
Arrows have no names and cannot be referred
to in other charts. The names of boxes must be
unique among its siblings boxes.



22C/55:181

States may be referred to (e.g., events and
conditions) in any state that belongs to the same
logical statechart. States in other pages are
preceded by the appropriate chart name (e.g.,
chart-name:state-name).



22C/55:181

Example

(S ) (51 )
& e
OFF ON
L ) [in(S2:Q)]
N J
S2
é )

s21
(j E[in(OFF)]
Q ~(»)
-

In statechart S2, the state OFF referred to in the
label E[in(OFF)]is understood to be the instance
in state S22 since it appears in the same
statechart, even though there is another state of
the same name. However, in the statechart S!,
the condition in(S2:0N) refers not to the state of
that name in S1, but to the state in chart S2.



22C/55:181

Scopes for textual elements — events,
variables, and actions — are associated with a
defining chart with a separate notation (kept in
the Data Dictionary by Rhapsody). Visibility
extends throughout the defining chart and all its
descendents.

The top level

Since the overall organization is hierarchical,
there will always be a “root” chart. This provides
a natural location for the incorporation of global
facilities.

Of course, any practical system will include built-
in facilitates and libraries of supporting
definitions. Also, the ability to animate and test
these reactive models is critical, and statecharts
are amenable not only to prototyping, but to
automated code generation from the
specification. Two highly regarded systems or
prototyping statecharts are Rhapsody by I-Logix
and Rational’s UML system, Rose.



