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Completeness in ADTs

In logical systems, the idea of completeness refers to the ability to prove all true statements. In ADT
specifications  this translates to proving all valid identities between values in the TOI(s).  One way to ask
about the adequacy of an ADT in this regard is by the question — when have we written enough equational
axioms? Of course, this question can only be answered from an intuitive perspective since the answer
depends on what we “intend” to specify. In ADTs a somewhat weaker property turns out to be technically
helpful.

Definition: if an ADT specification <S,e> with pre-defined types T1, T2, … , Tn has the property that for

every term t of the term algebra T(S,∅) whose sort is Ti (1≤i≤n), there is another term t' so that t ≡t' (or t

ªt' for final algebra view) and t' involves only the operations of Ti, then the specification is sufficiently

complete.

So for instance in our example of the Stack of natural numbers, the sort of TOP(PUSH(s,i)) is the pre-
defined type natural number, and to enjoy sufficient completeness, the specification must provide a means
to eliminate the Stack operations that appear in this term — that is, we want to be able to determine the
actual “natural number” that the signature promises. This is especially crucial in the final algebra view
where objects are differentiated by the pre-defined results that can be “extracted” from them. Also, to ensure
the no junk axiom, it is key in the initial algebra view.

Consistency in ADTs

In logical systems the idea of consistency refers to the impossibility of proving a false statement. We seek
this same property in the ADT specifications we write, and we need to be aware of how things might go
awry. In ADT specifications, the manifestation of consistency varies somewhat with the semantic
viewpoint that we adopt.

Consistency from the Final Algebra Viewpoint
If there are no pre-defined types, then there is no option for distinguishing objects of the TOI, and so the
final algebra view yields a trivial one element domain. In this case consistency is assured, but the
specification can involve only trivial behavior. Hence in the final algebra view, there will invariably be one
or more pre-defined types. In fact, in the final algebra view any ADT specification can be built up starting
from the Boolean pre-defined ADT. If we assume Boolean is a pre-defined type, we say that an ADT is
inconsistent if True = False may be proven. In practice, we may consider elements a and b known to be
different in any pre-defined type, and if it can be proven that a = b, then the ADT is inconsistent. We shall
see a little later how this may happen all too easily.

Consistency from the Loose Semantics Viewpoint
In the loose semantics point of view, an ADT specification is consistent if every equation t = t' which can
be deduced is true in all the models of the ADT (recall that a model is an algebraic system with the same
signature as the ADT that satisfies all the equations of the ADT).

Consistency from the Initial Algebra Viewpoint
Technically, inconsistency is impossible in the strict view of the initial algebra interpretation since two
terms are equivalent only if they can be proven so. However, this requires that we disregard the hierarchical
strategy of building up specifications from pre-defined types, a step we are unwilling to take. In practice
the situation is not really different from the final algebra view. An initial algebra ADT is inconsistent if
for some t of a pre-defined type, t ≡ t' can be deduced in the TOI when in the pre-defined type t ≠ t'. While
the initial algebra view does not always necessitate pre-defined types, we usually find them crucial. If there
is no pre-defined type, an initial algebra ADT is certain to be consistent. But if there are pre-defined types,
we must be concerned with whether there are “collapsing” types.
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Example of Inconsistency
Suppose we assume the natural numbers, Nat, with the usual operations (including =) as pre-defined, and
we wish to provide an ADT specification of the (positive) rational numbers, Rat. We regard rationals as
pairs in integers, and propose operations (among others):

num: Rat Æ Nat to yield the numerator of a Rational
den: Rat Æ Nat to yield the denominator of a Rational
make: Nat ¥ Nat Æ Rat to yield Rational with given numerator/denominator

We then introduce equations
num(make(n,d)) = n
den(make(n,d)) = d

and since for rational numbers 
a
b
    = 

c
d
    if a*d = b*c, we include the equation

r = if num(r)*den(s) = num(s)*den(r) then s else r

But then we can conclude that make(0,1) = make(0,2) and hence
1 = den(make(0,1)) = den(make(0,2)) = 2 !?


