Feb 4, 2005 -- Lecture 8

22C:169
Computer Security

Douglas W. Jones

Department of Computer Science

Program Security

Is this program secure?

A simple question only if program has no input or output

Threats:

From: the legitimate users
the illegetimate users
the developers
other programs it listens to

To: the program's own execution any device the program controls any stored data it manipulates any other programs it talks to

IEEE Programming terminology:

Error

A mistake made by a programmer

Fault

Embedding of error in program

Failure

Manifestation of fault in behavior

Relative to spec assumed correct!

Security and Programming

Security error:

Failure to understand security problem

Security fault

Vulnerability created by security error

Security failure

Exploitation of security failure

Security Errors in Specification

1997, Microsoft Spec: Visual Basic in all MS Office Apps

Assume Correct implementation

Security fault

Opening any file in an Office App
can have arbitrary side-effects

MS OFFICE VIRUSES

Security Errors in Specification

C Standard Library, ca 1973
char * gets (char * str);

Assume
Correct implementation

Fault
Buffer Overflow Errors
Used by many attackers

Security Errors in Specification?

Decision to use unsafe tools

C

C++

MS Office

Banning such tools can be materially improve security

There is resistance to this Some of it is very legitimate!

Security Errors in Implementation

Error

```
use of gets() (should use fgets())
use of strcat() strncat()
failure to check parameter validity
```

Security Errors in Use

Error

Reliance on insecure products
Demanding features now, security later
Failure to update in face of known bugs

Marketplace Forces

Reinforce many of these behaviors

Attacks from Developers

Frequently overlooked

How do you prevent

Backdoors

Trojans

Easter Eggs

The threat from illicit users is familiar