Jan 31, 2005 -- Lecture 6
The ($\frac{1}{1}$
University OF lowa

22C:169
Computer Security
Douglas W. Jones
Department of Computer Science
Block Cyphers

An Idea for Symmetric Key Cyphers

Block of plaintext: $\quad P_{1} P_{2} P_{3} P_{4}$

> V. V
> Key - Encypher V
Cyphertext block: $\quad \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$

> VV
> Key - Decypher

V
Block of plaintext: $\quad P_{1} P_{2} P_{3} P_{4}$

Characteristics of Block Cyphers

For each key, encypher and decypher are One to One functions
There are 2^{n} ! one to one mapping on n bits Ideally, key simply selects the mapping

How do you select a mapping?
Hard work!

Block Cypher Issues
Block size:
Same plaintext likely twice in message, Too Small
Much larger than key size,
Limits universe of mappings
Typically
Similar to key size

DES - First widely used block cypher 1974, adopted as FIPS 46, 1977 Developed by IBM with NSA "help"
Block size $=64$ bits
Key size $\quad=48$ bits (why so short?)
Idea: Multiround permutation and XOR
EFF built a DES cracking engine, 1998 cost: under \$250,000 speed: 3 days to crack

DES, the idea:

Generate the key schedule
16 keys, 48 bits each
Each key is function of original key
Apply keys in succession
16 rounds of encryption
Each round looks relatively weak
Design emphasis
Easy hardware implementation

Top level view of DES (2-round version)

Function blocks in each stage of DES

Key Schedule Generation

Cracking DES (RSA DES Challenge)

First public crack, 1997
39 days using over 10,000 computers
Team lead by Rocke Verser of Loveland Colorado

Second public crack, 1998

3 days using array of Deep-Crack chips

What To Do?

Triple DES:
DES(k1, DES($\left.\mathrm{k}_{2}, \operatorname{DES}\left(\mathrm{k}_{3}, \mathrm{t}\right)\right)$)

Warining: What if
$\operatorname{DES}\left(\mathrm{k}_{1}, \operatorname{DES}\left(\mathrm{k}_{2}, \mathrm{t}\right)\right)=\operatorname{DES}\left(\mathrm{f}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right), \mathrm{t}\right)$
Proofs are difficult!

AES (Rijndael)

Joan Daemen and Vincent Rijmen,
Selected as AES in 2000 in open competition run by NIST
As of 2003
Certified for classified information
As of 2004
No recognized successful attacks
Characteristics:
Block size $=128$ bits
Key size $=128$, 192 or 256 bits
Multiround with key schedule

One AES Round

Substitute Bytes
Uses a table lookup to do one-to-one
Shift Rows
Shift each 4-byte row
Mix Columns
Linear transformation of 4-byte column
Add Round Key
Key for this round combined with bytes

AES Substitute Bytes Step

$\mathrm{a}_{0,0}$	$\mathrm{a}_{0,1}$	$\mathrm{a}_{0,2}$	$\mathrm{a}_{0,3}$		$\mathrm{b}_{0,0}$	$\mathrm{b}_{0,1}$	$\mathrm{b}_{0,2}$	$\mathrm{b}_{0,3}$
$\mathrm{a}_{1,0}$	a_{1}	$\mathrm{a}_{1,2}$	$\mathrm{a}_{1,3}$	SubBytes	$\mathrm{b}_{1,0}$	b	$\mathrm{b}_{1,2}$	$\mathrm{b}_{1,3}$
$\mathrm{a}_{2,0}$	a_{2}				$\mathrm{b}_{2,0}$	b_{2}	$\mathrm{b}_{2,2}$	
$\mathrm{a}_{3,0}$	a				$\mathrm{b}_{3,0}$		$\mathrm{J}_{3,2}$	3

$b=S[a]$, where S is a 265 entry table

AES Shift Rows Stage

No change	$\mathrm{a}_{0,0}$	$\mathrm{a}_{0,1}$	$\mathrm{a}_{0,2}$	$\mathrm{a}_{0,3}$		$\mathrm{a}_{0,0}$	$\mathrm{a}_{0,1}$	$\mathrm{a}_{0,2}$	$\mathrm{a}_{0,3}$
Shift 1	$\mathrm{a}_{1,0}$	$\mathrm{a}_{1,1}$	$\mathrm{a}_{1,2}$	$\mathrm{a}_{1,3}$	ShiftRows	$\mathrm{a}_{1,1}$	$\mathrm{a}_{1,2}$	$\mathrm{a}_{1,3}$	$\mathrm{a}_{1,0}$
Shift 2	$\mathrm{a}_{2,0}$	$\mathrm{a}_{2,1}$	$\mathrm{a}_{2,2}$			$\mathrm{a}_{2,2}$	$\mathrm{a}_{2,3}$	$\mathrm{a}_{2,0}$	$\mathrm{a}_{2,1}$
Shift ${ }^{3}$	$\mathrm{a}_{3,0}$	$\mathrm{a}_{3,1}$	$\mathrm{a}_{3,2}$	a_{3}		$\mathrm{a}_{3,3}$	$\mathrm{a}_{3,0}$	$\mathrm{a}_{3,1}$	$\mathrm{a}_{3,2}$

This step is as trivial as it looks

The AES Mix Columns Step

Fixed linear transform of 32-bit column

The AES Add Round Key Step

XOR

