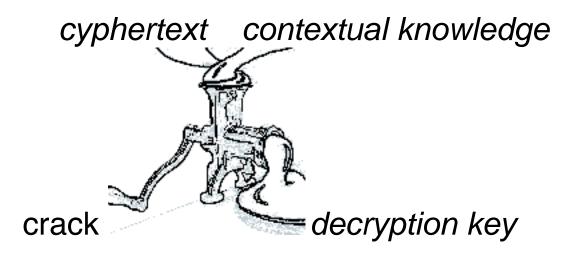

Jan 24, 2005 -- Lecture 3

22C:169 Computer Security Douglas W. Jones Department of Computer Science Cryptography

Encryption (Encoding)

cyphertext = Fencrypt(plaintext, keyencrypt)


Decryption (Decoding)

plaintext = Fdecrypt(cyphertext, keydecrypt)

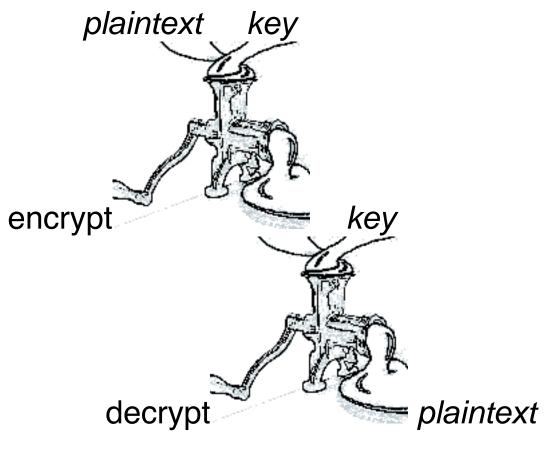
 $t = F_{\text{decrypt}}(F_{\text{encrypt}}(t, k_{\text{encrypt}}), k_{\text{decrypt}})$

Cryptanalysis or Code Breaking

*k*decrypt = *F*crack(*cyphertext*)

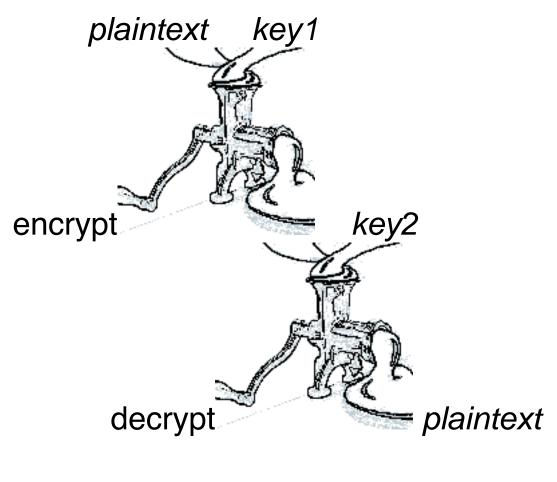
In an Ideal world, we hope for

for a message of length n $F_{encrypt} = O(n)$ $F_{decrypt} = O(n)$ F_{crack} not in computable


In the real world, we might accept

Fencrypt in P

Fdecrypt in P


Fcrack in NP

Symmetric Key Cyphers

 $t = F_{\text{decrypt}}(F_{\text{encrypt}}(t,k), k)$

Public Key Cyphers

 $t = F_{\text{decrypt}}(F_{\text{encrypt}}(t, k_1), k_2)$ $< k_1, k_2 > = F_{\text{key generate}}(k_{\text{master}})$

Example: Julius Caesar's Cypher

plaintext = "Veni Vidi Vici"

*F*_{encrypt} = for each character, add k

Fencrypt(plaintext, 4) = "Zirm Zmhm Zmgm"

*F*_{decrypt} = for each character, subtract k

for k = 13 on a 26 letter alphabet,

 $F_{encrypt} = F_{decrypt}$

Caesar Cypher = simple letter substitution

Captain Midnight Decoder Ring 1940-41

Example: Exclusive Or Cyphers

 $F_{encrypt}(t, k) = t \oplus k$ $F_{decrypt}(t, k) = t \oplus k$ plaintext = 1000101111000 k = 1010010110001 cyphertext = 00101110011001

So long as keys are random and never reused this code cannot be broken!