RUN TIME SUPPORT FOR THE TUTOR LANGUAGE

ON A SMALL COMPUTER SYSTEM

by
Douglas Warren Jones

R.S., Carnegie-Mellon University, 1973

THESIS

Submitted in partial fulfillment of the requirements
for the deoree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1976

Urbana, Tllinois




111

ACKNOWLEDGEMENTS

roftessor Thomas T. Chen deserves special credit for providing
the initial impetus behind this precject and for his continued
supcort and encouracement without which this project would never
heve been completed. 1 woula also like to thank A. B. Baskin and
Thomas Szolyua for the part they played in the implementation phase

ot this project.




1.

TABLE OF CONTENTS

INTRODUCTION .+ .« +« o o« o o o o « o o =
1.17. APPLICATIONS FOR A SMALL TUTOR SYSTEM . . .
1.2. THE POSSIBILITY OF OTHER LANGUAGES . . . .
1.3 PROJECT GOALS . .« v ¢ ¢ «a o o« o o =

BASIC DESIGN CONSTRAIRTS . . .« .« .+ =« =« .+ .

DOMAINS OVER WHICH TUTOK EXECUTION IS DEFINED .

PROGRAM SPACE . . . « s e e e
STUDENT OR USER VARIABLES . . « e .
COMMON OR COMMUNICATION VARIABLES « e«
STORAGE OFR EXTENDED USER VARIABLES . . .
VARIABLE SEGMENTING . . ¢ .+ + .+ o
PROGRAM REPRESENTATION . . . .+ <« .+ .+ .
DATA REPRESENTATION . . . .+ .+ =« =« =+

JUDGING OR INPUT MANIPULATION . . . . .+ . .

3.1. THE RESPONSE JUDGING MECHANISM . v s e
3.2. EFFECTS OF JUDGING ON PROGRAM QTRUCTURE o .
3.2.1 THE TUTOR JUDGING BLOCK . . . « e
3.2.2 CONDITIONS FOR RESPONSE EVALUATION - .
3.2.3 EXECUTION OF BLOCKS CONDITIONAL ON JUDGEMENT
3.2.4 JUDGING AND SUBROUTINE CALLS . . .« .
3.3. INTERPRETER MECHANISHMS AND THE COMPILER . .
UNITS OR UNIVERSAL FROGRAM SEGMENTS . . . . .
4.1, THE DIFFERENT USES OF UNITS . « e e e .
6.1.17. AS MAIN PROGRAM SEGMENTS e e e e .
4.1.2. AS SUBROUTINES . . . o e . .
4.1.3. AS INTERRUPT PROCESSING ROUTINE§ e e e
L.1.4. AS CONTINUATIONS OF OTHER UNITS . . . .
4&.2. PARAMETERS TO UNITS . . . « .
4.3. INTERPRETER MECHANISMS AND TFE COMPILER . .
4.3.17. PROGRAM STATUS INFORMATION . . . .
4.3.2. STANDARD CALLING AND RECEIVING SEQUENCES .

PAGE

15

15
16
17
18
16
20
21

23

23
23
24
25
27
27
29
29
30

iv




5. TUTOR CONDITIONAL AND LOOPING COMMANDS . . .

5.17. CONDITIONAL COMMANDS T
5.2. LOOPING COMMANDS . .+ .+ =« « o o« « o =«
5.3. LOCAL CONTROL STRUCTURES . . . . .
S.4. INTERPRETER MECHANISMS AND THE COMPILER .« .
6. TERMINAL INPUT AND OUTPUT - e e a4 e s .
6.17. THF PLATO IV TERMINAL .+ .. .+ + + « + &
6.2. TUTOR SUPPORT OF THE TERMINAL e e+ e s a
€.2.7. QUTPUT CAPABILITY . .« &« &« « o & o« o
6.2.2. SINGLE KEYSTROKE INPUT . . . .. « . .
6.2.3. TEXT INPUT FOR JUDGING . . s e e s e
6.2.4. RESPONSE TIME . - - e e s s =
6.3. UNIFORM INTERNAL CHARACTER CODE POSSIBILITIES
6.4. POSSIBILITIES OF SUPFORTING OTHER TERMINALS .
6.5. DIVISION OF INPUT/OUTPUT RFSPONSIBILITIES .
6.5.17. THE INTERPRETER - .- c . e e s e
6.5.2. THE VIRTUAL DFVICE hANDLER e e e & e
7. CONCLUSION e e e e s e s e s e e =
7.7, IMPLEMENTATION RESULTS . . « + « =+ =«
7.2. INCOMPATIBILITIES WITH PLATO . .. .+ .« . .
7.3. EPILOGUE e e =2 e e e e e e e e .
LIST OF REFERENCES . . . e e e e e s s s e
LPPENDIX A - SUMMARY OF THE EXECUTION OF TUTOR . . .
APPENDIX B — SPECIFICATIONS FOR THE INTERPRETER . .
AFPENDIX C - INTERMEDIATE CGDE COMPILATION EXAMPLES .
EPPENDIX D - COMPILATION OF UNITS AND JUDGING SEGUENCES
RPPENDIX E - TERMINAL TRANSMISSION CODES AND BUFFERS .

32

32
33
34
35

36

37
37
37
39
40
42
42
43
44
44
45

46
46
48
49

50

53

5&

66

70

7




Page 1

1. INTRODUCTION

Possihly the Llargest single <collection of computer based
instructional material 1in the world 1is written in the TUTOR
programming ltanguage E£11,19] fully supported only by the PLATO
system [1] deveLoped by the Computer-based Education Reasearch
Laboratories (CERL) of the University of Illinois. The PLATO system
arnd the asscciated TUTOR 'language have evolved togethér over the
last 10 vyears, and combine a numbervof interesting and powerful
features that are not‘ widely available in other systems. Though
intended primarily for the structuring of instructional material for
corputer presentation, the TUTOR Llanguage has been wused for
information system development [24], simulation of physician-patient
interaction [13,14), and 2 host of other applications. Subsets of
TUTOR have previously been implemented by others, most notably in

the MULTITUTOR- HYPERTEXT system at Northwestern University [17,718].

This paper deals with the design and implementation of a run
time support system for TUTCR in a small machine environment. The

entire system is described elsewhere [2,3,7,&,221].

1.1. APPLICATIONS FOR A SMALL TUTOR SYSTEM

The PLATO system uses a large dual processor machine with two
million ‘uords of 60 bit Extended Core Storage and a complex
multiplexor system to drive to up to_1000 terminals. Startup costs
for such a system are cuite high, a2s are communications costs if the

user community 1s geocographically dispersed. In addition., the size




Page Z

of the user community on such a system can raise serious managerial
and security problems. Because of this, there may be many
applications for an alternative in the form of an inexpensive system
of 20 to 30 terminals with the capability to tie into networks with

similar systems.

The feasibility of such a system has previously Leen
investigated with favorable results (6], although TUTOR has since
evolved, idnvelidating some cf the design decisions of this earlier

work.,

1.2. THE POSSIBILITY OF OTHER LANGUAGES

Currently the PLATO system supports only the TUTGR language for
the development of interactive programs, and there is no commitment
to support other languages for any but background or batch
processing. Alternatives to TUTOR need to be explored, particularly
in the area of control structures. At least one such language has
been develcoped and implemented on PLATO by transtation to TUTOR
{1C31. 11t s hoped that the interpretation technique descrikbed in

this paper will considerably simplify such experiments.

1.3. PROJECT GOALS

The principal goal a&addressed here is the demonstration that
TUTOR can be supported for a single user on & small to medium scale
machine 1in & manner compatible with extension to multiple users.
This involves an analysis of the different features of TUTUR showing

either that they are compatible with such an envirocnment, or if not.




Page 3

that the cost of incompatibility is reasonable. An interpreter and
compiler have been implemented based on the ideas presented here.,
and a Llimited number of TUTOR programs have been transferred from

PLATO.

Fecause of the speed at which TUTOR on PLATO is evolving, an
jmportant subgoal 1s to design the implementation with maximum
flexibility so that <changes <can be dincorporated with & minimal

amount of new work.

The notation and terminology used here are largety adopted from
the FLATO projects for 1instance, command names are enclosed in
daches (-dot-), and names of special characters are capitalized
(FONT)Y, however, TUTCR Llessons are referred to as programs and
students as users 1in order to emphasize that TUTOR is a general
puropse language and 1is in no way limited to instructional

applications.

The following chapter discusses the general nature of a_TUTOR
program and the different constraints on how it may be represented
and interpreted on =2 small machine. The remaining chapters deal
similarly with the special areas where TUTOR is most different from
conventional programming languages, specifically the areas of input
analysis or judging, prougram segmenting or units, and input/output.
This should not bhe considered as a complete description of an
implemenfation of TUTOR, as many conventional facilities of the

lanquage are only briefly covered, if at all.




2. EASIC DESIGN CONSTRAINTS

The <constraints governing the way TUTOR is implemented fall
into three large classes: Those introduced by the target hardware.,
those introduced by the TUTOK language, and those introduced by the
implementor for.other reasons. In the last class are such things as
the desire to eventually suppqrt cther programming lanquages, and
the desire to support user términals other than the preseht PLATO 1V

terminal.

Cne of the greatest barriers to implementing TUTOR in any new
environment is that TUTOR 1s defined in terms of the hardware on
which it is implemented at CERL, with lLittle or no attention to the
possibility of machine iﬁdependence. For this reason, part of the
problem of implementing TUTOR on a small machine Llies in deciding
which aspects of the original machine require emulation, and which

are ncnessential to the definition of TUTCR.

2.1. DOMAINS OVER WHICH TUTOR EXECUTION IS DEFINED

It 1is convenient to discuss the design constraints imposed by
the TUTOR Llanguage 1in terms of the resources that must be brought
together for a program to be run. 1In this context, the current
PLATO implementation as well as the &available implementation
alternatives can be meaningfully discussed, and related to the

problems of a small to medium scale machine environment.




Page 5
2.1.1. PROGRAM SPACE

The program to be executed may te shared by many different
users, all executing different parts of it in a time-shared manner.
On PLAT0, the programs are stored in Extended Core Storage (ECS).,
and when & wuser wishes to execute a portion of a program, logical
seaments of tHat program are brought 1into central. memory for
execution, These segments, called ‘units' on PLATO, provide a
virtual memory mechanism tﬁat allows full use of two million words
of ECS by a central processor with a relatively small memory of its

An alternative way of segmenting TUTUOR programs has been
proposed that 1involves Link editing of unit clusters L63. This
schieme relies on the &ssumption that all units called from any unit
are known at compile time; thus, it should be possible to build
clusters of units such thet 1inter-cluster linkage is minimized.
This scheme may be attractive in environments where large segment
sizes are acceptable, but constructs such as -imain- [section 4.1.11]

may invalidate the above assumption.

The TUTOR units on PLATO are compiled into two components: The
instruction part of a unit is a list of 60 bit entries containing
encodings of the command names and parameters or pointers to other
information. 1The second part of each wunit holds the additional
informat%on reguired by the commands in the first part. The
consecutive Llist of commands 1in - the first part of the unit
simplifies the Llinear search for <certain commands used by the

judaing mechanism [(appendix AJ.




Page 6

Because many TUTOR commands invoke complex system functions at
run time, or amount to complex service subroutine calls, TUTOR
pregrams will always conéist largely of the computation of
parameters to system subroutines. Directly compiling TUTOR code to
machine code <could consume unreasonable amounts of time and space
because of the expense of convenfional talling sequences. On the
other hand, given the paged virtual memory capabitities that are
becoming common on todays medium scale machines, some

de-emphasization of the TUTOR unit would be desirable.

If TUTOR is to be supported in a demand paging environment, it
would ke useful to merge the two components of each unit in order to
improve program locality. The MULTITUTOR implementation [17,18] has
achieved this meraer by including 1in the 60 bit code for each
command a pointer to the next command, allowing the continued
intergretation of Jjudging semantics in terms of a scan of the
(linked) command Llist. In fact, the run time scan can bevfully

eliminated from the interpretation process [chapter 3].

2.1.2. STUDFNT OR USER VARIABLES

Each wuser of & TUTOR procram has a unique array of 150 words
thet may be used for wuser dependent <computation. These wuser
variables retain their values when a user changes programs, and they
are saved when a user is not on the system; thus, they may be used
fcr  inter-proaram parameters and user related historic data so tong
as all programs involved agree on the use of each location. There

is no automatic storage allocation mechanism nor 4is there any




Page 7

dynamic storsge management system for user datar, though it is hoped

that some form of both will be introduced in the future.

tne of the basic assumptions inherent in the design of TUTOR is
that all data types will fit in one machine word. As a consequence.
TUTOR does not need or have any data type enforcement or checkings
instesd, the data type must be provided with each memory reference.
For examgle, 'n1' refers to the first available location as an

'vli' refers to it as a floating point number, and

integer,
alphanumeric data must te stored packed 1in integers. This
assumption 1is acceptable 1in the CERL implementation where the
machine word size 1is 6C bkits, but on the majority of available

machines in the small to medium size range the common 16 or 32 bit

word size could pose a problem.

The word length must Le comparable to 60 bits in order to allow
simple program  dinterchange with PLATO; on small to medium machines
representing & TUTOR word as 64 bits is reasonable as has been
previcusly proposed [6]1. Many available machines 1in the target
cless have standard hardware available to do 64 bit floating point
arithmetic, but the integer fépresentation poses some problems as 3¢
bit integer arithmetic s the largest commonly available on such

machines.

Pepresenting 1integers by the 32 most signifigant bits has been
proposed' elsewhere [61 but could introduce many problems in program
conversion because of the amount of_expticit bEit manipulation that
TUTOR encourages. Ffor the same reason, the sign bit must be the

most signifigant bit, so intecers may be represented either by the




Page 8

least signifigant 32 bits of & word with sign extension, or by the
full 64 bits using software simulation. Both of these alternatives
would add qreatly to the size of programs comgpiled into machine code
and signifigaently 1increase execution times in any implementation.

Thus again, some form of interpretation seems preferable.

2.1.3. COMMON OR COMMUNTCATION VARIABLES

An important capabilify' of multiple wuser on-line computer
systems that 1is frequently not well - supported is inter-user or
inter-proaram communication. The UNIX system (16] provides a
special type of logical file called a2 pipe which may be read from by
one task after beinc written on by another, but most timesharing
systems allow user tasks to communicate only by shared disk files or

other slow and inelegant means.

TUTOR provides common variables as & solution to this problem.
If a program accesses common variables, then all users of that
progrem will share the same copy of them (as opposed to user
variables which are unigue to each user). In addition, common
variakbles are also preservedwuhen Nno users afe attached so they may
be used by the proaram to record historic information and constant
daeta as needed. Critical section manacement for access to common
data 1is provided by the -reserve- and -release- commands which

operate on semaphores asscociated with each named common block.

On FPLATO, common variahles are stored in ECS; to use them a
mapping must be established between the ECS copy and 2 1500 word

central memory obuffer which the program can actually access. This




Page G

mapping is implicit if the size of the common is less than 1500 60
bit words, but must be explicitly stated for larger commons, and may
be changed at run time. %&iven paged virtual memory hardware instead
ot woerd addressable ECS, these arbitfary mappings may be quite
difficult to stport. Fortunately, only &about one fourth of all
eiisting TUTOR programs use common variables at all, and of these
only a fraction wuse more than the 1500 word limft; so the
translation costs imposed by incompatibility in the support of large

common regions should not be objectionable.

2.1.4. STORAGE UR EXTENDED USER VARIABLES

The 150 word Llimit on the number of user variables poses a
severe restriction on the utility of TUTOR for solving many classes
of problems. Because the 150 wuser variables retain their values
between sessions for any civen user, it was not considered practical
te expand this Llimit on PLATO; instead a new datavspace called
"storage" was introduced. Storage is statically allocated for each
progrems, but the system mugt allocate it dynamically to handle
transfers of control from one proocram to ancther. Unlike common or
user variables, storage is always deallocated when the user leaves

the system.

Storage is allocated on PLATO 1in ECS, and the same mapping
mechanism is wused to gain access to it as is used for common
variables. On PLATO, all disk input output must take ptacé to ECS
(storage or common). Because of this, the most frequent use of
storace on PLATO 4is for disk bufferings incdmpatibilities in the

support of this will probably be tolerable.




Page 10

2.1.5. VARIABLE SEGMENTING

ts was previously mentioned, the TUTOR language relies on the
assumption that any machine word may hold any data type. Even on a
60 bit machine, this forces great inefficiency in the storage of
such things as character strings or bit arrays. Early in the
" evolution of TUTOR a partial solution to this was provided by
special commands that manipulate character strings packed 10 six bit
codes per 60 bit word. This'pértial solution proved inadequate., and
a ageneral solution was provided in the ability to segment blocks of

physical words into arrays of smaller logical words.

It 1is the intent of TUTOR that a reference to an element of &
segmented array should be equivalent to a réference to a machine
word in all contexts. FEeczuse of the basic design of the PLATO
implementation, this intent 1is not yet fully supported, but given
the foreknowledge that it should te, any new implementation should

do so from the beginning.

2.2. PROGRAM REPRESENTATION

Eecause access to segmented variables and integer arithmetic
must both be subroutines on a 32 or 16 hit machine, and because
almost atl of the TJUTOR commands are subroutine like, with many
parameters and complex side effects, the time overhead of
intermediate code interpretation as compared to direct machine code

execution should not be too excessive.




Fage 11

Fxecution by interpreting the original source would be
prohititive because of the <cost of lexical analysis and run time
symbol table maintenance (TUTOR makes no restrictions analogous to
those of BASIC on variable print names). Given that some kind of
source compression is required, compilation of expressions to
postfix form, and interpretation by means of a virtual stack machine
provice an obvious choice. The stack in such a schemé can also be
used for action routine argument passing and for user procedure
linkace, as well as for temporary storage needed by any of the
action routines; this g¢reatly simplifies the problem of storage

allocation for the interpreter.

On the target <class of machines, an eigcht bit instruction
syllable 1is reasonable, with 16 bit branch addresses, and 16 bit
address fields when needed. Because of the existence of user,
common, storage, and segmented variables, address fields must also
contain an indication of which data space or subspace is to be
addressed as well &s the word size and characteristics of that
spsce. The wuse of 16 bit branch addresses limits the program size
te 65536 bytes, comparable to the 8000 60 bit word limit that used

to exist on PLATO.

Most of the information about each of the many address spaces
and segmented subspaces c¢an be stored in a table of space
chasracteristics. With this scheme, each memory aduress must contain
an index (& bits) into this seament table as well as the 16 bit
offset intc the desired addres#ihg space. It shoutd not be

difficult to extend this scheme to multi-dimensional arrays as has




Page 12

recently been done on PLATO. This scheme should be contrasted with

the hzrdware data descriptor schemes of some machines [15].

The assignment of values to entries in the segment table would
be the responsibility of the compiler if the PLATO definition of
TUTCR is retained, however it is 2 simple extension to allow run
time redefinit{on of table entries. Thus this memory addressing
mechanism can easily be extended to surport dynamjc allocation of

tempgorary variables on the stack.

Interpretation of an intermediate code similar to that outlined
aboﬁe can be quite fast. The code accomplishing the action
Spécified by any particular instruction can be prefixed to code that
tetches the next byte from the instruction étream, increments the
progrem counter, and branches through @ jump table indexed with the

byte fetched to the next action routine [41].

As mentioned earlier, all parameters to TUTOR commands can be
passed on the interpreter stack. Given an alternative to the run
time scan of the command Llist that some commands require, the
various commands may then bhe represented in the intermediate code by
a prefix byte followed by an & bit command code. This allows the
definition of 256 commands per avatlable prefix. Parital
-specifications for such an interpreter are presented in appendix B’
excmples of commands compiled 1into this <code are presented in

appendixvc.




Page 13
2.%, DATA REFRESENTATION

The alternative representations for integers have already been
discussed [section 2.1.21,» and as was mentioned, the reasonable
choices are interpretive simulation of full 64 bit integers or use
of available hardware 32 kit integers with sign extension to 64 bits
provided intefpretivety. The latter alternative 1is probably
preferable because there are few problems requiring the use of 64
bit integers and the simutation of muttiplication and division to
the full precision can be quite slow. The PLATO hardware only
supports intecer operations for the 48 least signifigant bits of the
6C vit word, and it is not lLikely that the the difference between 48

anrd 32 bits will cause many problems.

Because of the practice of dealing with character and bit
strings packed 1into words as integers, the integer comparison . and
bit manipulation operations must always work over the entire word

size.

The Llarcest remaining data representation problems occur with
tharacter data. Many prograems on PLATO make explicit use of the
packing of ten 6 bit character codes per machine word, and until
recently, it was common practice to make explicit wuse of the
specific 6 .bit codes for various characters. Ffor the latter reasons
it has been sugoested [6] that the PLATO ¢ bit codes be preserved
and packed into machine bytes with high order bits unused. Since
that suggestion was made, use of quqted charater Literals has been
stroncly encouraged on PLATO, so any character set will probably be

acceptable so long as it is extensive enough.




Page 14

Ttough many sirnple CAl programs may survive the change from ten
6 bit to eight 8 bit characters per word, this change may be
responsible for the greatest conversion costs for many of the more
interesting programs on PLATO. On the other hand., preservation of
the current PLATO character set on machines with natural addressing
to £ kit bytes would introduce what‘may be an unacceptable execution
overhead on smaller machines, as well as making PLATO software
incompatablte with other software already existing on the host

machine.

tne probklem that may invalidate tﬁe assumptions about the use
of the natural addressing capabilities of some machines is that
TUTOR programs frequently make explicit use of the Left to right
storace of bytes and segmented variables in a machine word. This
will recquire interpretive intervention if TUTOR is to be supported
on any of the large family of machines that store bytes right to

teft in memory.




Page 15

3. JUDGING OR INPUT MANIPULATION

The response judging cepabilities in TUTOR serve two separate
purposes. First( they provide the user with well structured access
to a set of powerful primitives for requesting terminal inputs
rejecting that. jnput, or’ requesting that the input be modified.
Secondly) they provide access to a powerful set of character string
and numeric expression anal}sis facilities for the evaluafion of the

terminal input.

The response judging subset of TUTOR was originally conceived
as a mechanism to ke used for <computer quiz administration or
similar applications, where the computer uouid present a question.,
and aecide which of the responses anticigated by the program author
most <closely resembled the answer_given by the user. ‘After having
decided which response to the guestion was given, the program had
the alternative of accepting the response or rejecting it. If the
response was rejected, then the program could provide appropriate
feedbazck to the user, after which the computer would automatically
reguest that the user modify”the response before re-submiting it to

the program.

2.1, THE RESPONSE JUDGING MECHANISM

Once the input has been accepted from the terminal., there are a
number of ways that it can be analyzed. TUTOR provides analysis
routines that will compare the input with a character string for an

exact match, evaluate the input as & simple numeric quantity.




Page 16

evaluate it as an expression, parse it into words., or both parse and
compare it with a predefined vocabulary with allowance for simple

spelling errors.

Atl of these capabilities exist on other systems, though they
are not commonly ell mede available in one tundle. The required
analysis methods_ are disjoints, and can be individually implemented
by conventional means. The actual input analysis mechanism for use
on a smell machine 1s a éebarate problem [26], and the mechanisn
used on PLATO has hkeen described in [231. The 1input output
requirements of TUTOR judging are considerably more complex than
conventional unit record approaches [chapter 61, but the complexity
is not outside the vrange of adaptability of some vendor supplied

systems [2].

The remainder of this chapter deals with alternatives for the
imglementation of the proaram control structures defined by the

TUTOR judging mechanisms.

3.2. EFFECTS OF JUDGING ON PROGRAM STRUCTURE

The control structures that TUTOR prcocvides for respoﬁse judging
are described by the PLATO project in terms of a number of progranm
execution states, where each command may have a different meaning in
each state [11,19]1., These states are summarized in appendix A. The
descriptibn of the judging control structure in terms of execution
stztes, markers, and searches tor wvarious commands obscures the
underlyina control structures to the extent that most begining and

many experienced TUTOR proaraemmers never fully understand it.




Page 17

The KAIL selector [9] was developed as an alternative syntactic
representation for  the TUTOR judging control structure. The KAIL
selector actually represents only part of the capabilities, with the
block exit —capabilities of the post —sbecs~ states not supported:
howevers, it represents an important step towards the interpretation

of the judgina mechanism in terms of traditional control structures.

3.2.1. THE TUTOR JUDGING BLOCK

trom the description 1in appendix A, it can be deduced that a
region of TUTOR code 1involving judaing always beyins. with an
-@rrow=-, and 1is ended oy & nNew ~arrow-, —E€ENUarrow=-., Or -unit-
command. ‘Fturthermore, termination by an -arrow- or -unit- command
is eguivalent to termination by an -endarrow- immediatly preceding
the -arrow- or -unit~. Since a compiler can always generate the
appropriate code for an implicit =-endarrow- before -unit- and
~arrow=- commarids it there was a previous -arrow=- command, it is safe
to consider judging only in terms of -arrow=- -endarrow- pairs or
judging blocks (excluding for the moment the problem of

sutiroutines).

Furthermore, the =-arrow- s merely & prefix to a loop that
becins with the first juaging command after the -arrow— and ends at
the =-endarrow-, with termination occuring when judging state ends
with an. "ok" judgment. uiven the above observations, an -endarrow-
can te compiled as a conditional branch to the first judging.command
atter the most recent -arrow-, where the branch will be followed if

the last judgment was "no"” [appendix D.1].




Page 18

When subroutines and Llocal =-branch- commands are included in
this description, it becomes much more complicated. There are only
rare uses made on PLATG of the more pathological interactions
tetween these lanquage components, and in.fact the addition of a few
simple rules to the TUTOR language allows this simple description to
e retained: First the -endarrow~- for each -arrow- must be required
to be in the same unit or prooram segment as the -arroQ-. Seconds
all simple tranches 1into  and out of the rénge of a judging block
must he forbidden. These rules correspond closely to the
trzaitional structured programming  rules uhere unrestrained
braﬁching js limited and control structures may be nested but not

arbitrarily overlared.

3.2.2. CONDITIONS FOKk RESPONSE EVALUATION

The judging commands 1in TUTOR fall into two classes: Those
that are considered judgina commands because they reguire the input
to bte ready before executing, and must therefore be executed in
jucging state, and those that actually perform some judgment, ending

the judaing state with an "ok! or "no". The judging commands may be
interspersed with regulsr commands but in judging state only the
judaing commands are executed; this suggests linking each judaging
cormand to the next in a seguence by branches that are conditional
on judoing state. This may be considered to be merely the removal

of tte regular commands from the linked command list implementation

of MULTITUTOR [17.,18].




Page 19

When an -endarrow- 1is encountered in juuging state, the
juroment is "no", so the interpretation of all -endarrow-s as being
preceded by an implicit -no- command is safe (the -no- command is

detined as always ending judging with a "no"” judgment).

3.2.3. EXECUTION OF BLOCKS CONDITIONAL ON JUDGMENT

With the additicnv of the branches from endarrow to the first
jucaing commands, and from each judging command to the next, it is
rather easy to follow through to the end: Any judging command after
the first ore 1in a sequence that is preceded by regular commands
must be preceded by a conditional branch back to the location after
any previoﬁs -specs- command, or to the -endarrow-. There 1s an
exception to this rule when the previocus judging command was
-specs—, in which case the branch s always to the -endarrow-.
These branches &are conditional on the state being postjudging
recular, and they accomplish the eventual transfer of control to the

-endarrow- where the decision is made whether or not to loogp.

The majority of TUTOR judging blocks are actually quite well
structured; typicelly consiéting of 2 loop terminating on an "ok"
judgment containing an input request and a series of blocks of code
executed conditicnally on the results of the wvarious judging
commands. Appendices 0.1 &nd b.Z2 Jllustrate the reduction of a
tutor judging sequence to a flowchart, and from there to code in a
well structured form: note that the inclusion of post'-specs-
regular commands requires the use of Zahn's event driven block exit

[5,12,27].




Page 20

3.2.4., JUDGING AND SUBROUTINE CALLS

Cne of the difficulties of compiling TUTCR that will be
discussed 1in more detail in chapter 4 is that it is not possible to
specify that a wunit 1is only to be used as a subroutine, as an
extension to another wunit, or as a main program; in fact, it is
perfectly possible to use a sirgle unit as all three though this may

e considered bad practice.

For the purposes of this discussion, it is sufficient to know
that there are two kinds of subroutine calls in TUTOR: The first cf
these, the =-do- commands, 4is a regular command, and is the most
ccrmmonly wused. The second is the -join- command, it is « somewhat
confusing command because it is defined #s being executed in all of

the TUTOR execution states.

If a wunit is entered while in judging state (via -join=-), the
seiarch for a judaing command must continue. This may be
accompplished by following the unit entry with @ branch on judging
state to the first judging command (if &any) in the unit, or to the

end of the unit if none.

then judaing is ended within a unit thet has been attached as a
sub:routine by -join-, control must somehow return to the approprisate
plece. In trhat the compiler does not know how the unit is to te
executed, 1t will be attempting to create a branch to the previous
-specs- command, or some later -endarrow-. One alternative is to
define -endarrow- (even it dmplicit) differently if 1t s

encountered before an ~arrow- in a unit or if there is no -arrow=- in




Page 21

the wunit; the compiler may then link all regular blocks controlled
by judeing commands to a possiktly wvirtual ~endarrow=-, with the

appropriate state marker beina set betore the return.

The execution of -join- while in search state, that is while
searching for the (gossibly implicit) -endarrow- after an "ok"
judament, s not a widely wused feature of TUTOR, and it was not
considered necessary tovconsider it here. There has even been even
recent discussion of elimihating search state on PLATO and using a
compiled branch scheme where each -arrow- would have a pointer to

its corresponding -endarrow- or equivalent.

The problem 1is then to differentiate all the different
execution states that may exist on return from & unit attached by
-join- with <conditional branches to the éppropriate places: One
branch should be to the next judging command if still in judging
state, the other to the next -endarrow- if 1iIn post ‘pseudo’
-encarrow- state, and finally no branch if in any of the regular

states.,

3.R. INTERPRETER MECHANISMS AND THE COMPILER

The adoption of the division of control structure semantics and
interpretation as outlined above provides the necessary flexibility
needed to support alternate source languages that share the same
executioh package. This places considerably more burden on the
compiler than the PLATO scheme, but consideraonly broadens the range

of alternative execution schemes.




. Page ¢2

The wvarious states that have been mentioned so far for judging
purposes may be reduced to @ 4 bit ‘nibble' appropriate for testing
with simple conditional branches. The reguired bits are listed in
apprendix R.1.1 and the test and branch cdmmands in B.3.1. Appendix
D outlines the compile time expansion process by which various TUTOUR
commands are converted into assortments of conditional branches on

status, and calls to unconditional utility routines.




Pa 23

(e}
[¢o]

4. UNITS OR UNIVERSAL PROGRAM SEGMENTS

i well as being the basis of the virtual memory scheme on
PLATO, TUTOR units may be used as subroutines by the -do- or -join-
commands. Units may also be attached as logical continuations cf
other units by the -ceto- command, OF they may be used. as new main
procram segments by the jump commands (not only -jump-, but also

‘key srming' commands).

4.17. THE DIFFERENT USES OF UNITS
4.1.1. AS MAIN PROGRAM SEGMENTS

A unit to which control is transtered from another unit by the
-jump- command, by one of the interrupt facilities, by sequential
entry from the previous unit, or as the first named unit of & new
program 1i1s executed as a main unit. ©Cn entry to a main unit, the
subroutine Llinkage stack is cleared, the screen is erased, and if
the feature 1is armed, the unit named as an imain unit is called as

an initializing routine by a@ call egquivalent to the -do- call.

The most obvious solution to providing the special effects on
entry to a main unit is to have the interpreter code for branching
to a main unit cause these side effects. This is the approach used
on PLATO0, and has the undesirable result that the interpreter code
used for entry to a unit would not be usable for-a language where
the type of & program secment 1is bdund noct by how it is reached but

by how it is defined.




Page 24

An alternative method for compilation of main units exists in
which each unit begins with a special command responsible for all of
the side effects of main unit entry except the -imain- call (which
must teke place after the resolution 6f parameters). All of the
commands that enter the unit as a main unit take the address of the
side effect command. and all others, such as subroutine entry and
-10t0- take the address following 1t. This provides fof a complete
separation of the side effects from the control structuring commands
at the interpreter Llevel at the expense of one or two extrea bytes

per unit.

when control reaches the end of a main unit, (including passing
the implicit -endarrow- of the previous chapter), execution holds
until the user directs it to continue (by pressing the NEXT key).
When ready, control transfers either to the next unit in sequence or
to tke unit specified in the Last -pext- <command if one was
encountered since the begining of the last main unit, in either
ciser, the new unit is entered as a main unit. These functions can

essily be accomplished by a simple command at the end of each unit.

4.1.2. AS SUBROUTINES

TUTOR provides two kinds of subroutine calls which differ only
in their relationship to TUTOR judging [section 3.2.41. Clearly, an
essential reguirement for a subroutine 1i1s thaet it return when
completed. This may ke accomplished by having the end unit command
mentioned in the previcus section execute a subroutine return if the

current unit was entered as a subroutine;, but to allow future




Page ¢5

experiments with alternatives to units, it is simple to explicitly
compile @ conditional subroutine return just before the implicit end

unit command.

4.1.3. AS INTERRUPT PROCESSING RCUTINES

In an interactive environment, it is important to allow the
user some way of easily.altering the flow of program execution. It
is e€asy to think of this ébility in terms cf allowing the user to
interrupt one process and initiate another, possibly with a return
to the first when the second is finished. TUTOR allows a special
group ot keys on the keyboard to be armed with unit names to provide
a «qood apﬁroximation of this; whenever input is reqguested from the
terminal and one of these armec keys 1is strucks, a ~jump- like

transfer of control takes place to the associatea unit.

There are two types of idinterrupt Llike branches allowed in
TUTOR. The first s simply & wuser initiated =-jump-; this is
associated with keys such' as BACK and STCP, and provides no real
implementation problems, given that a key arming mechanism can be

made tc work, and that a main unit entry mechanism exists.

The second type of dinterrupt like -jump- allows a return in
addition; this type, most Freaquently associated with the HELP and
TERM keys on the keyboard, poses the major implementation problems.
The ideal behavior of & HELP type branch would be for the units
attached by it to bhe executed as subroutines, with the entire
execution status being restored on return to. the point where the

interrupt occured, and with allowance for nesting of HELP




Page 26

interrupts. Unfortunately the status that would need to be saved
includes the entire contents of the terminal display and input line
eaditing buffers at the time of the interrupt. On the PLATO system
with its 512 by 512 dot addressable screen, this would entail the

storage of over 256000 bits ot information per level of nesting.

The solution adopted in TUTGR, which is probably a reasonable
one, is to return to a-desiqnated point before the point where the
interrupt occured, allowing the contents of the screen to be
reaeneratecd, and allowing the reinitiation of any input transaction
thast had been in prouress when the interrupt occcured. The restart
point 1in TUTOR s the start of the most recent main unit entered.
this 1is calied the base unit, and when & HELP type branch occurs the
BACK key 1is armed in the new main unit to jump back to the base

unit.

TUTOR does not allow true nesting of HFLP seguences, rather it
allows the arming of the HELP key within such sequences to branch to
new -help- seauences without changing the base unit pointer. Though
the bhase pointer may be manually cleared or set, it is normally

cleared by following the specially armec BACK brench.

Fxperiments are being made on PLATO in the support of other
interrupt Like branchina abilities, for instance the ~-helpop- key

arming mechanism, but these are too new to cover here.

The PLATO mechanism for supporting TUTOR ~help- type branches
and returns 1involves the use of two pointers, one to the current
mein unit entry point, and one to the current base unit. This

scheme 3is not only adeguate for a2 small machine implementsation, but




Fage 27

easily lends itself to experimentation with nesting of interrupts by

savine and restoring the base unit pointer during procedure linkage.

4.1.4., AS CUGNTINUATIONS OF OTHER UNITS

The ~goto- command in TUTOR simply transfers to the named unit
without any change to any of the program status, including memory of
the Llocation of the ﬁrevious -arrow- it there was one. The
resultant interaction of ~g6tb- with the judging mechanism includes
such things as returns to the Llast =~arrow- and state changes;
kecause of these patholosical casess, -goto- poses problems to a new

TUTCR implementation.

The -goto- command 1is incompatible with the compilation of
branches prorosed in chapter 3 as a solution to implementing TUTOR
judging sequencing. Ffortunately, the use of this aspect ot the
TUTEGR  languace is not encouraged, as it is difficult to explain the
unexpected results. Fecsuse of this, and in keeping with the rules
mentioned 1in section 3.2.1, the use of -goto- from within judging
secuences may be forbidden (in almost all cases, =-do- can be used to

achieve the same function much more clearly anyway).

4.2. PARAMETERS TO UNITS

Somewhat Llate in the history of TUTCR, in fact after much of
the inifial work on this project had been completedr, the ability to
pass parameters with any direct - control transfer to a unit was
introduced. Previous programming practice in TUTCR had generally

included the- - allocation of fixed groups of user variables to each




Page 28

unit that needed parameters, and then assigning values to each
parameter before each call. Wwhen the passing mechanism was
introcduced, it was made completely compatible with that approachs,
that' is, parameters in TUTCR involve no femporary storage or Llocal

variahles.

tiven a stack based interpreter, the obviocus implementation is
to push =all of the parameters onto the stack before a call and pop
them 1into the appropriate (oéations after entry into the new unit.
There are two complications to this schgme, one involving main unit
entry which must por the subroutine Llinkage stacks, the other
involving the fact that with any call, a subset of the parameter
list may be passed, with only the corresponaing locations being
changed 1in the called routine, the cother gparameter Llocations

retzining their previous contents.

Because gparameters may be passed not only with =-do- -join- and
-coto~ but also with -jump- and with trivial extensions -nextnow-.,
the first problem occurs. If parameters are passed on the stack
then the commands that start & new main unit must copy any parameter
block down the stack when ’they undo the procedure linkage. The
elternative 1is the setting aside of a temporary special data area
only for péerameter passing, an unplessant alternative, though the

one used on PLATO.

The second problem may be solved by passing as an additional
perameter & bit vector indicating which parameters are present.
This bit vector must clso give the types of each parameter (integer

or floatinag} hecause TUTOR performs automatic conversion of




Fage 29

parameter types, and the requirements of fast compilation preclude a
global first pass to work out the parameter types expected with each
unit. OGiven a 64 bit wide stack and 2 bits for each parameter, a

total of 32 parameters may be passed, an acceptable Limit.

This scheme is compatible with the eventual implementation of
tempgorary tocal data allocation for units usinc the single stack.
The same calling sequenfe could be used, and the receiving sequence
would set up some special segmented variable [sectioh 2.1.51 to
allow addressina of the parameter Llist and new local storage instead

ot copying the parameters into fixed locations.

4.3, INTERPRETER MECHANISMS AND THE COMPILEK
4.3.1. PROGRAM STATUS INFORMATION

The unit sequencing mechanisms ocutlined above require that the
proaram status contain at least a main and base unit pointer., and
four more status bits that may be tested in & manner similar to
those wused for Jjudoina. One status bit would be required for the
perameter passing mechanism indicating that paremeters exist on the
stack and must be stored. The second and tﬁird status bits indicate
respectively that the current unit is being executed as an attached
unit ky -do- or -join-. The fourth bit is needea to differentiate
~help~- from -helpop- type unit attachment when the base pointer is
non zerd. A count of the number of parameters currently on the
stack must alsc be meaintained so that the main unit entry routine

can copy them down the stack properly.




Page 30

In addition to this, the program status must contain space for
@ return address for -do- and -join- and some mechanism for nesting
these <calls. The minimum information that must be saved for nested
calls consists of the return address and do/join status bits.
Saving and restoring the other linkage bits would not cause
conflicts, but the judcing stath bits must not be saved and
restored, as they are used to return results of judginé operations
in joined units. Saving and restorinyg the base pointer would allow
future experiments with -help- type interrupt nesting while not

contlicting with the current TUTOR definition.

The wuse of a sinale stack for the return linkages as well as
intermediaté results, pazrameters, lcop contrcl blocks, and future
procedure Llocal wvariables requires that the program status also
contain a3 special Llinkage pointer to the previous program status

block on the stack.

4.3.¢c. STANDARD CALLING AND RECEIVING SEGUENCES

The &actual call generazted by & -do- or -join- command must
consist first of reserving’ space on the stack for linkage, then
placing the optional gparameters on the stack, followed by the bit
vector giving the types ana positions of the parameters. After this
is the actual subroutine call or branch, which must have as in Lline
parameters both the address of the unit to be executed and the
numter of arguments so thkat the linkage can be correctly placed in

the stack.




Page 31

If & wunit expects parameters, it must begin with a branch
conditional on the sbsence of parameters &around the parameter
recievinyg code. The parameter recieving code consists first of the
computation of all o¢f the parameter addresses followed by the
execution of the parameter resolution command which stores values in
acddresses with optional flocating or fixing (as indicated by the
perameter presence bit vector and the type information sﬁpplied with
the aodresses). The process of parameter resolution pops the values
and addresses, which is why the Llinkage must bLke before the
parameters on the stack. Only after all of the parameters have been
resolved car the imain unit be calleds this should be the
responsibility of a special command that performs the appropriate
linkace when executeo 1in 'main wunit state'. At the end of each
unit, after the (possibly virtual) -endarrow- (if &any), a return

must be inserted conditional on -do- or =-join-.




Page 32

5. TUTOR CONDITIONAL AND LOOPING CCMMANDS

AlL bhut the most trivial of proorams must make choices and
regeat various sections of code. TUTGR provides a number of
mechanisms for this raenging from simple conditional branch commands

to conditional and lcoping variants of other commands.

5.17. CONDITIONAL COMMANDS

A large number of ccmmands in TUTOR have conditional variants
where the command iJs executed with respect to one ot a group of
perameter lists dependent on an integer selector value. €Commands

with conditional wvariants include tlow of control commands such as

-t;iranch-, -goto-, ana =-do-; key arminag commands such as -help-;
display oaeneration commands such as -writec=-; and computational
commands such as -calcc- and -calcs-., There may be any number of

choeices 1in these corditional forms, the first one being selected

wher the selector is negstive, the second on zero, and so forth.

These conditional variants spread to a large number of TUTOR
commands at @ time when they were the only control structures
emedable in the body of a wunit besides those associated with
judgina and subroutirne calls. On PLETO, conditional and simple
commands are not compiled 1into variants of cone intermediate code
cormand, but into different commands, where the tormat of a
conditional command wmay have rno relaticn to the format of the non

conditional one with the same name in the source text.




Page 33

It would greatly simplify interpretation if the conditional
aspects of a command were compiled out so that from the point of
view of the interpreter all commands would have a tTixed format, this
requires trat there be a compiler generated directive to select
emoune a Llist of commands and parameter lists, analogous to the way
-case~ statements are htandled in many languagyes with & table Lookup
branch instruction. Appendix C€C.3 contains an examble of the
expansion of a typical TUTCGR conditional in terms cof the instruction

set of appendix B.

5.2. LOOPING COMMANDS

The Llooping wvariants of the =-do- and -join- subroutine calls
were for a lona time the only way thet an artitrary block of code
could be repeated except by the use of conditional -20to- or -jump-
conxmands., These 'Looping variants take an index variable, initial
value, final value, &nd step size, 2and may either increment or
decrement the index wvariable. Tf the looping and conditional
capabilities &ere wused at the same times, then the loop includes the

conditional List of units within 1t.

As  with the conditional commands, PLATG implements these
loopina wveaeriants a&s distinct intermediate code commands. Againe to
simplify interpretation, the alterrnative of compiling the loop into
a test @&nd Dbranch instruction, 2 simple command, and an increment
and branch back instruction is preferable. The TUTOR lOOps'aLL are
defined as Llooping zero or more times, so there must be a pre-loop

check instruction, as well as a post loop increment and branch.




Page 34

tn PLATO, the increment value and bounds may be arbitrary
expressions and may be changed durino the execution ot the Lloop.
fxecution ot the Lloop control commands may be considerably
simplified it these values are fixed once the lLcop is entered, so
thzt they are only calculated oncer, and saved on the stack during
Loop execution (allowing nesting of loops). This incompatibility
should not introduce too many problems as most appLicatfons make no
use of the variable increment and bounds, and those that do may be
ezsily reproaramed with the -branch- instruction. The instruction
set of appendix E.3.1 lists the precheck and postindex instructions.,
and‘ an example of the expansion of a TUTOR Llocoping instruction is

cziven in appendix (.4.

5.3. LOCAL CONTRCL STRUCTURES

Commands for bhuilding control structures within the confines of
a sincle unit were introduced somewhat lste in the history of TUTOR.
These commands are now generally useable thouch they were originally
limited 1in scope to sinucle extended -cale- statements. Structured
flow ot control commands are.still being discussed for introduction
jnto TUTZR, but these should easily be comgiled into the simple

commands Listed here,

The -doto- command provides the loopine ability ot -do- and
~-join-, repeatineg not & single commend bBut & group of commands.
These Lloops may be nested and may contain -branch- commands to exit

the Lcop on exceptional conditions.




Page 35

The -branch- command &snd its conditional variant allow transfer
of contrcl to an arbitrary label in & unit. If the -doto- command
is dimplemented with the use of the loop control block and commands
introduced 1in section 5.2, then special brovisions must be made for

branches interacting with loops.

franches 1into the ranye of a loop can be prohibited with few
itl effects on progrem fransferability. Eranches cut of a loop must
remove the Lloop e€ontrol tlock from the stack before exiting, thus
requiring a stack modify instruction. BHBecause the compiler can not
exsily determine when <cenerating code for & branch whether the
brenck exits a8 loop or not, it is necessary that branches pop all
loop contrél blocks from the stack before hranching, and all labels
inside loops must recover them. Appendix C.4 contains an example of

this.

5.4. INTERPRETER MECHANISMS AND THE COMPILER

The above outlined approach =allows the separation of the
corntrol structures from the other components of the language at
compile time, again provid{ng for the implementation of alternate
control structures in other languages using the same interpreter.
This is gquite important because of current discussion on PLATO about
the implementation of an entire new set of control structures for
TUTOR similar to those of PASCAL [25]. The interpreter is also
greatly simplified by the elimination of recdundant mechanisms

inherent in this compile time separation of control structures and

commands.




Page 36

6. TERMINAL INPUT ANDR OUTPUT

One of the most unique aspects of the FLATO environment is that
all of the terminals are graphics oriented with excellent peripheral
support for user _interaction. The TUTOGR lancuage evoLved in this
environment, and because of this the input/output features of the
lznguaqge differ in mahy ways from those devised for batch card or

teletype oriented systems.

The PLATO IV terminal supports no natural unit record suech as
the {ine or nage for output:; because of this, TUTOR must use stream
output formstting commands. & wide variety of these are providedy,
including a set of graphics utilities that provide for rotation and

scale modification of line drawn figures and text.

TUTOR provides two c¢lasses of terminal 1input management
facilities, both of which are somewhat reccrd criented. Ffor the
simple idinput operations, a fixed record size of one or more
cnaracters or external 1input codes 1is supported, with no features
outside the capahilities of conventional unit record processing.
Commands that manipulate such simple idinput include -pause- &and
-collect- as well as certan control structure side effects such as

those associated with the -unit- command [section 4.1.11].

The most complicated input/output capabilities of TUTCOR are
associated with the 4input judcine mechanism. Here 1input s
initisted by the first jud¢ing command after the -arrow- (section

3.1, appendix Al, with a number of state variabtles chenging exactly




Page 57

“how that input is collected. The input record is @ line or block of
text, however, many non conventional input/outgut operations may be

performed with respect to these reccrds.

6.17. THE PLATO 1V TERMINAL

KLU TUTOR terminal dnput/output 1s detined in terms of the
PLATO 1V  terminal [20], this terminal has & 512 by 512 dot
addressable screen with an-8 by 16 character matrix givine 32 lines
of 64 characters on the screen. The terminal has in addition to a
herd «ired character set & programmable one, dot and vector
generation, and the ability to selectivly write and erase individual

dotss, vectors, or characters.

The MULTITUTOR systen [18] supports & number of other terminal
types, and the experience aained thgre indicates that conversion of
prourzms to use 24 line by &0 character alphanumeric CRT terminals
is not an unreasonable task. The wmost important terminal
characteristic required for the support of many TUTOR programs
appears to te a character addressuble terminal with the ability to
setectively erase or modify the display contents on a character Ly

chasracter basis.
6.2. TUTCR SUPPORT OF THFE TEKMINAL

6.2.17. QUTPUT CAPABILITY

TUTOR's cutput facilities may be divided intc three categories:
Trose of text output, arapnics output, and special device output.

Text is normally sent straicht to the terminal with only minimatl




Page 3&

system intervention except to hendle overlength Llines and to
estzblish & Lleft margin. Fefore <cending text to the screens, the
program must specify where on the screen the text is to be shown:
the system then maintains information so that the program may always

determine the location of the last character displayed.

TUTOR @allows all display coordinates to ve specified either as
character and lLine numbers {(coarse qrid) or as dot coordinatés (fine
gric). To simplify inferpretation, a special {nterpreter
instruction to convert coarse to fine grid coordinates is included
(eppendix B.3.7) sec that all instructions may be defined only in
terms of fine grid. The compiler is'then responsible for insertinc
this conversion instruction when the source program uses coarse

grid.

Text output from TUTOR may optionally be converted to line
drzwn output by the use of either system or user defined linesets.
The line drewn text is processed through the graphics output
packace, thus allowine the text to be rotated end its size changed

relative to an arbitrary oriyin.

The qgraphics output capabiltities of TUTGR range from simple
plottine of points and Llines between absolute physical screen
coordinates to & general two dimensional graphics ability. This
includes the sbility to display complex ficures with respect to a
locica2l origins, and to scale and rotate trese ficures for display.
The obility to display graphic information through a2 window or mask

18 zlso included.




Page 39

¥Yost TUTOR applications use only the simple graphics in terms
of absolute screen coordinates, so & new TUTOR implementation
supporting only those should not be tco restrictive. Implementation
of PLATO Llike extended yrephics capabilities poses no conceptual
probblems given sufficient computational power, and was not done in
the imptementation' described here merely because of time and labor

constraints.

In &ddition to the above, TUTOR allows program acéess to the
writeble dot matrix character set and other PLATO terminal parts
suth as & rear projection slide selector, audio fesponse unit; anag
other devices. Support of these features should pose no new

problems.

6.2.2. SINGLE KEYSTROKE INPUT

The -pause~ command in TUTGR provides the basis for all single
keystroke processing on PLATO. The -pause- command has two special
capabilities that make 1t more than just o stream input instructipn:
First it provides the ability to set & timer on the input so that
ths program will resume on either timer expiration or a keystroke at
the terminal, with the return to the program indicating how the
-pause~ ended. Second, it s possible to specify which possible

inputs will be accepted and which ignored by & -pause- command.

Thke dnput filtering capabilities of the -pause- command are
easily implemented at the interpreter level, with a simple 'loop
until wvalid input® calline a simple stream input routine. The time

limit on input is more difficult, requirina interaction between two




Page 40

different and normally disjoint operating system components; in some

systems this may require signifigant system lLevel changes.

Cther TUTYOR commands may be defined in terms of -pause-, such
s -collect- which 1is equivalent to @& Lloop with & counter and
-péuse= in it, or the -nextnow- and -unit- commands, which are
eyuivelent to -jump- commands preceded by ~pause- commands with only
the NEXT key armed as a valid input. HSiven a wo;king -pause-

mechanism, it should be simple to implement these commands .

6.2.3. TEXT INPUT FOR JUDGKING

There are four aspects of TUTOR text input that go beyond the

normal unit record capabilities. The first of these ic an extension

to the normal input line editing capability that is present in some
form on most interactive systems (backs;ace keys etcl). Whenever a
TUTGR  procoram expects & line of input, it is possible to specify a
text buffer from which that ine may be constructed by copying
characters or words interspersed as necessary with the new input.
This facility atlows simule but powerful text editors to be
constructed &s well as allcwing (Al tessons to bring up an old

student response and ask that it be modified for resubmission.

The second important text input capability required is that a
proagram must be able to examine the contents of the input buffer and
perform extensive computations while allowing the input operation to
be resumed &t a later time. The proaram may even generate output
ana make wuse of the single keystroke input facilities while some

text input operation is suspended. This capahbility is required by




Page 41

~tke  judging mechanism [section 3.2.1, appendix AJ where the same
input Lline may be repeatedly modified and reentered for judgment

until it is judged '"ok".

If output is ocenerated between a temporary termination and the
reogering of an input request, the output must ke erased from the
screen  in  the process of backtracking to the state that existed
pefore the temporary input termination. Cn PLATO it was decided
that total erasure of anything written was infeasable., S0 only the
last -write~- or other output command is_erased By the system, and an
-eraseu- unit may be armed to be attached as if'by -do~- after the

automatic erasure so that the program may do the rest if needed.

The above PLATO solution dis good enough that the -eraseu-
mechanism is rarely needed; therefore, incompatibility here can
probably bhe tolerated. An alternate solution for instance would be
to erase the most recently displayed N <characters after the
termination of the most recent dinput operation, if N is large
enough, few prbgrams would be effected. This alternate approach has
the advantage that it enforces a separation between the source
lancuage control structures and the input management system

software.

The Llast important <capability of TUTOR text input is the
ability of the wuser to specify and change the idinternal code
sequences associated with the keys on the terminal keyboard (*micro’
substitution). This ability should be consideread a function of the

terminal or the device driver rather than of the interpreter.




Page 42

 6.72.4., RESPONSE TIME

The facilities listed above could easily be supported at the
interpreter level using the same stream input mechanism used by the
~pruse- command and using the stream output to echo to the display’
however, the response time for such a scheme could be considerably
degraded because of the expense of activating the interpreter for

each character of input.

A preferable alternative would be to place the line editing
functions at a high priority as a distinct task. or even at a direct
interupt priorify level. This solution requires that some way be
tound to communicate all of the desired information between the
intercreter and this high priority task. The best solution would ke
the wuse of some extension of the input/output protocols supported

under the host operating system.

6.35. UNIFORM INTERNAL CHARACTER CODE POSSIBILITIES

One problem with PLATO input/cutput is caused by the six bit
character code used for the internal text representation. This
internal code reguires two prefix codes (ACCESS and SHIFT) to
represent the entire character set uséd on FLATO; in conjunction
with the =-pause- command this causes difficulties because one
keypress or external ingut from the terminal may not in general be

represented as one internal character code.




FPage 43

On  PLATQ the result is that the PRUSE command returns the last~
input in a character code different from the one used internally.
It would seem prefsrabte to use a single universal character code
for btoth 1input and output, however, the.PLATO terminal itself does
not 0o this so software character code conversion would be requred.
If thke internal code is to be some extension of ASCII then
conversion on both dinput and output would be requ{red. These
conversions can probsbly best be put in the line editing mechanism

or even closer to the terminal, as is described elsewhere [22].

The dintroduction of a new wuniversal <character code will
introcuce some incompatibility in'the handling of external device
and touch p&anel 1input because these must still be manipulated as
explicit bit patterns on PLATO, tut the advantages of all of these

changes seem to outweiah the problems in the long run.

6.4. POSSIBLITIES OF SUPPORTING OTHER TERMINALS

The wuse of an ASCII compatible character set opens the way for
surport of many other types of terminals. Support of terminals with
only & subset of the PLATO capabilities would require filtering of
output to eliminate functions that asre not supported;, this filtering
process may bte either an interpreter function, in which case the
interpreter must always be aware of the terminal characteristicss or

& function of the output driver.

It is even more important to consider future support of the
varjous microporcessor based ‘*intelligent® terminals that are now

proliferatinc, as many of these shoulo be able to support many if




Page 44

net all of the functions of the PLATO terminal, furthermore, the
character set used and transmission protocols of such terminals are
all under internal sortware control and should be easily matched to

any host system [21].

6.5. UIVISION OF INPUT/OUTPUT RESPONSIBILITIES

Pecause of the above Llisted considerations, the following
breakdown ot responsibility for input/output seems best., and is the
one that was implemented. Like common variébles' the way that
linesets and micro tables are supported is highly dependant on the
facilities for dnter task sharing pf information supported by the
host hardware and operatinq systems; as such, these are not covered

here,

6.5.1. THE INTERPRETFR

The dinterpreter is responsible for tormatting output into dot.,
line, positionﬁnq, and text generation commanas. Communication
between the interpreter and the terminal control program takes place
viaz packed buffers which contain on input either unit records for
judging input or single <characters for the -pause- ftamily of
commands. €n outputr the buffers contain either packed data for
display on the screen or data to be interpreted by device handler to
modify future transactions. These buffers are passed to the virtual
device support proaram under the input/output protocols of the host

operating system.




Page 45
6.5.2. THE VIRTUAL DEVICE HANDLFR

The wvirtual device handler 1dis & piece of software that
communicates with the interpreter or other user level programs via
the system supported ingut/output buffer passing mechanism. The
virtual device handler is responsible for <character code
translation, dinput Lline editing, and key echocing, as well as

filtering output to the terminal, and input timer maintenance.

Appendix E outlines the buffer types anu message meanings that
the handler must respond to as well as an appropriate extension of
ASC1I. If the -—size~ and -rotate- directives are to apply to the
eckoing of keyset idinput durina Lline editing, then the entire
rasponsibility for handling these should be placed in the virtual
device handler insteed of the interpreter. This 1is reasonable

because these are logical functions of future intelligent terminals.

Fecause the virtual device handler is the terminal from the
roint of wview of the intercreter, it is proper to consider the
interpreter as being written assuming an ideal intelligent terminal.
Virtual device handlers compatible with thé interpreter have been
written to handle two different terminals to date. A PLATO IV
terminal has been supported using haﬁdler software distributed
between the mainframe and a remote microprocessor entirely
responsible for cdde transltation [2,22]. &lso, & simple video CRT

terminal with no oraphics capacity has been supported [2].




Page 46

7. CONCLUSION

kn interpreter was implemented ‘on the basis of the
considerations outlined here. A medium scale machine with a maximum
memory capacity of one million 3 bit bytes was used. This machine
hes & wvirtual memory mechanism based on 256 word pages, and &
nominal word size of 16 bits, thouah the instruction set allows
direct addressina and manipulation of bits, bytés, words.,

double-words, and cuad-words.

The 1interpreter was written to take advantage of machine

facilities for reentrant codinag, and has been tested with two users

sharing it. The virtual memory mechanism has not yet been exploited

to its fullest extent but it is snticipated that support of demand

paging of the user proaram space should nct be difficult.,

7.17. IMPLEMPLEMENTATICN RESULTS

Bench marks run on the interpreter indicate that it can support
17 compute bound users while providing the same response
tharacteristics as provided bky PLATO for compute bound foreground
users during prime time (with abouf 400 wusers). Using the
assumption that no more than half of the users will he compute bound
at any time, a system based on this interpreter should be able to

support about thirty on line users at a time.




Page 47

The problem of core sharinyg becomes critical if thirty users
are¢e to be supported on such a system. A compact user program
representation will significantly reduce the swapping or page fault
overhezd, and it the dinterpreter canA be made to run without
sionificant overlay use, the load on the backing store will be even
fﬁrther reduced. The performance of the dinterpreter s highly

encouraging with respect to these considerations.

The estimates previously published [6] concerning the storage
requirements of & small computer ba;ed PLATO like system are
considerahly greater than the requirements experienced here (both
for the wuser program and for the interpeter). The previous
estimztes were based on extrapolation from the PLATO implementation.
The elimination of redundant mechanisms in the interpreter as

outlined here is responsible to a great extent tor these savings.

The interpreter, as currently imglemented, supgports around 60
TUTOR commands as well as their conditional and looping variants.
To support tHese commands, as well &s the besic computational
ability requires 6800 16 bit words of reentrant program space as
compared with the previous estimate [A] of 18000 16 bit words to
support only the 20 most freguently wused commands with overlay

processing beinag used for the remainder.

Aside from the timine benchmark already mentioned, only one
PLATO TUTOR Llesson has been transfered +trom PLATO to the new
interpreter to date. For the lesson transfered ['s game of (O' by
R. Blommel the compiled cocde required 9500 & Lit bytes versus 2000

60 bit words on PLATO, & savinugs of 37%.




Page &4&

7.2. INCOMPATIBILITIES WITH PLATO

The dinterpreter desiyn proposed here is not fully compatiblie
with PLATO. The most basic incompatibilities are those of data
representation introduced either by the hardware, for instance a
word size of 64 instead of 60 bits and two's instead of one's
complement arithmetic, or by the software, such as an & bit extended

ASCII character set instead of an extended é bit display code.

incompatibilities in the support of .common and storage
introduced by a change from ecs to disk based backing storage or by
the use of a -Daged virtual memory also fall 1into this first
category. However, these areas are highly system dependent and as

such are not within the realm of this paper.

Other incompatibilities have been introduced in order to obtain
a areater degree of freedom 1in the <choice of implementafion
approach. These 1include restrictions on changinc the increment and
bheunds of a -doto- loop and limitations on the use of -goto- and

-branch~ with respect to judging blocks.

Further problems with compatibility are sure to arise in the
tuture as the TUTOR lancuage and PLATO system evolve. In that the
TUTOR languace as currently designed does have shortcomings, this
evolution can only be encouraged. In the light of this, it can be
asked what value there 3Js in tryina to supgort TUTOR on a small
machine if it is not possible to maintain compatibility with the
only major implementation of the language. The most important

justification 1is ©probebly that a small implementetion allows a




Fage 49

. decree of experimentation that is not gossible on the large central
PLATO system which is ©wound to compatibility by its large user

community.

7.%., EPILOGUE

Though exact compatibility between the FLATO implementation of
TUTOR and one on a small to medium scale machine may well be
impossicle, all of +the important features of the Langdagé can be
supported 1in a manner flexitle enougb to bevquite useful. It 1is
hoped that the demonstration of this will open the way for numerous
exxeriments in the supgort of TUTOR Like abilities on smaller
systems, as well as encourage the application cf highly interactive

graphic computing in new areas.




{13

£111

[121

LIST OF REFERENCES

flpert, D. and Bitzer, D. L., "Advances in Computer
rased fFducation," SCIENCE, vol. 167 (2C Marcn 1970)
rp. 1582-1590.

Raskin, A. B., personal communication.
Haskins, A. B. and Floomfielo, L., personal communication.

FFell, J. R., "Threaded Code,"” CACM, vol. 16+ no. 6
(June 1973).

Fochmann, G. V., "Multiple Exits from & Loop Without GOTO,"
CACM, vol. 16, no. 7 (July 1973).

fracketts, J.: Principel Investigator., "Final Report -

A TUTOR Minicomputer System,"™ Item no. (00ZAD, Contract
no. MDASD3-74-C-0288, ARPA Order no. 2517, Softech Inc..
Waltham, Mass. (7 February 1975).

Chens, T. T.r et. &l., "& Depository Heaslth Computer
Network," to be published.

Chen, T. T., personal communication.

Embleys, D. W. and Hansen, W. J., "The KAIL Selector -
a Unified Control Construct." " Sigplan Notices, vol. 11,
no. 1 (January 1976). :

Embley, D. w.r "Experimental and Formal Language Design
fpplied to Control Constructs for Interactive Computing.,'
Fh. D. Thesis, University of Illinois (April 1976).

“hesquieres, Jo.r et. al.r "Intreoduction to TUTCGR," PLATO
Putlications, Computer-based Fducation Research Laboratory.
University of Illinois (June 1975).

Knuths, D. E.r "Structured FProgramming with GG TO Statementss'
Computina Surveys, vol. 6, no. 4 (December 1974), pp 261-301.




13

£143

£1s53

C161]

{173

[1&3

£193

{211

Page 51

Lackmann, J., “"Simulation and Self-Assessment: The FPhysician
Self-Assessment Study Final Report,"” American Medical
Association Department of Continuing Medical Education
(1970).

Lackmanns, J.r, "Physician Self Assessment: The Role of Self
Pssessment in Medical Information Systems.," Proceedings of
The First Illinois Conference on Medical Information Systems.,
Instrument Society of America, Pittsburch, Fa. (1974).

tonergan, W. and Kings, P., "Design of the B 5000 System,"

Datamation, vol. 7, no. 5 (May 1961), pp 2&-32.
Crepublished in: Bell, €. G. anc Newell, A., "Computer
Structures: Readings and Examples,” McGraw=Hill Book
Company, New York, N. Y. (1971)1

Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing
System," CACM, vol. 17, num. 7 (July 1974) pp 365-375.

Schuyler, J. A., "Student Response Matching Algorithms for
Computer-Based Learning Systems,"” Ph. D. Thesis,
Northwestern University, tvanston, Illinois, (August 1973).

Schuyler, J. A., "The Complete Guide to HYPERTUTOR.,"
Computers and Teachina, Northwestern University (June 1974),

Sherwood, B. A., "The TUTOGR Language," PLATO Publications.,
Computer-based Education Research Laboratory, University
of Illincis (June 1975).

Stifle, J. E., "The PLATO 1V Student Terminal.,"” Proceedings

of the Society for Information Display, vol. 13 (1972).
[paper by the same name also published by: PLATO
Publications, Computer-based Education Research Laboratory.,
Univeristy of Illinois (November 1974))

Stone, M., et, al., "An Intelligent Sraphics Terminal with
Multi-host System Compatability.,” Digest of Papers, IEEE
COMPCON'74, Washington D. C. (September 1974) pp. 37-40.

Szolygar T. H.s "Desiyn and Implementation of an ASCII
Interface for a PLATO 1V Terminal," M. S. Thesis, Department
of Computer Science, University of Illinois (May 1976).




23]

(243

£2513

(263

(271

Page

Tenczar, P. and Golden, W., "Spelling, Word, and Concept
Recognition," CERL Report X-35, Computer-based Education
Research Laboratory, University of Illinois (October 1972).

Wwilliams, B, T., et. al., "PLATO-Based Medical Information -
Systems Overview,"” Proceedings of the first Illinois
Conference on Medical Information Systems, Instrument
Society of America, Pittsburgh., Pa. (1974).

Wirth, N., "The Programming Language PASCAL.," Acta
Informatica, vol. 1 (1971) pp 35-63.

Wu, Vincent H. L., personal communication.

Zahn, €. T.» "A Control Statement for Natural Top-dohn

52

Structured Programmina,” fpresented at Symposium on Programming

Languages, Paris (1974).




APPENDIX A - SUMMARY OF THE EXECUTION OF TUTOR

The following material is reproduced with permission from the
AIDS information system on (and about) PLATO. This is not a
complgte summary in that some states are not clearly described and
trrgtthteraction of the various states with subroutines is largely
omitted.

PSO Author Group ---- CERL

Univ of Illincis, Urbana

Gy Copyright, 1973, 1974, 1975, 1976 Board of Trustees
of the University of Illineis

regsular state

judge state

Only regular commards are executed In regular state,
TUTOR skips all other commands. Regular state ends
when a judzing command ie encountered or when the end
of the main unit is reached. In judge state TUTOR
executes only judging commands, skippinz 3ll other
commands. Judge state ends when a response 1s matched
or when the judging region ends (at an —endarrow-,
another -arrow-, or the end of the main unitl).

search state
condense time

During search state, only -join- 1s executed. All
other commands are skipped. Search state ends when

an -endarrow-, another -arrow-, or the end of the main
unit is reached. Encountering an -endarrow- or another
-arrow- in search state causes TUTOR to switch to
recular state. TUTOR then continues processing In
regular state; executing recular commands. ' The non-
executable TUTOR commands set pointers, make lists,

and other functions when a lesson is condensed. The
ron-executable are skipped when TUTOR is executing.




#1

4.
k5
P

#3

Page 54

When a lesson is condensed, the non-executable TUTOR
commands set pointers, make lists, and other furctions.
When TUTOR 1s ewecuting 1n regular state, judge state,

“or search state, all non-executable commands are skipped.

TUTOR starts execution of a lﬁumOﬁ Iin regular s
The commands before the first -unit- command (the 1.e.u.)

Care executed. TUTOR enters the first main unit in

regular state; TUTOR proceeds to #2.

Regular commards are executed in a sequential manner,
If an -arrow- wss one of the regular commands executed,
TUTOR remerbers the location of that command in the
urnit (sets the ~arrow- marker) .

If the -srrow- marker wss set, execution in regular
state cesses when a judzinz command is reached and
TUTOR proceeds to #4

If no -arrow- command was exeuuted (no -arrow- marker
was set), éxecution in rezulsr state ceases then the end
of the main unit is reached dnd TUTOR proceeds to #3.

The main unit named in the tag of the -next- is bran-
ched to when the MNEXT key is pressed. If there is no
~-next- commaind, TUTOR brarnches to the unit which phy -~
sically follows the current unit when the MEXT key 1s

pressed. The student may also exit this "completed”

main unit by pressing an active function key, e.g. HELP;
or executing a -jump- of -jumpout-.

The new main unit is started; TUTOR proceeds to #2.




4

CTUTOR waits for a student response, Judge state begins
- when the student presses ‘the NEXT kev, an active -jkey-,

after the first character with a -long  1- 1n effect,
or when the lerngth limit is reached and a -force long-
is in effect.

When judge state begins, TUTOR starts at the command
after the -arrow- and exccutes judging commands. in a
sequential order until a match is found or tha region
of judzing ends. The region of judging ends when an
~endarrow-, ancther ~arrow-, or the end of the main

unit is reached.

If a -specs- was one of the judging commands executed,
TUTCR rememzers the location of that command 1n the

uniit (a -specs- marker is set). If more than one -specs-
was executed, the last -specs- executed serves as the

"epecs marker”. TUTOR proceeds to #5 .

If 5 judgzing command was matched, TUTOR executes reg-
ular commands following that matched judging command
unt:l another judging command, an ~endarrow-, anocther
-arrow-, or the end of the main unit is reached. The
autematic response mark up is displaved and the judgment
is set (either “ok® or “no”). TUTOR proceeds to #6.

If a judging command was not matched, TUTOR judges
"no" and the automatic respohse mark up is dxaplaypd
TUTCOR proceeda to #6.




#6

Page 56

If a -specs- marker was set for the current -arrow-,
TUTOR begins at the commend following the last -speca-
executed in rezular state. 1] regular commands are
executed until a judging command, -endarrow-, another
~grromw-, or the end of the unit 1s reached.

If the -arrow- was judzed "no", the student must erese
all or part of the response by pressing NIXT, EDIT,
ehif£-EDIT, ERASE, shift- ERASE, or an active —jkL”*

The auto erasing of the last comment, the judoment, and
the automstic responsz mark up alse cccurs fand ths
crasing by an active -erassu-) when the student ersses
part or all of the res pOAJh. TUTOR return to #4.

L)

If the -arrow- was judged "ok", TUTOR procesds to #7
in search state.

ARiter the reszponse was judzged "ok", TUTOR returns to
the command after the -arrcw- to search (search state)
for an —ﬁndarrow« ancther -arrow-, or the end of the
main unit (-join- is executed in search state, as well
as in regular state and judpe state).

If an -endarrcw- 1s reached, TUTOR changes from searczh
state to regular state and executes regular commands
just as 1f & new main unit was entered (except there
15 no clearing of the main unit pointers or automatic
panel erasure). TUTOR procesds to #2.

If another -arrow- is reached, TUTCOR changes from search
state to regular state. The new -arrow- marker is set
and TUTOR contirues te execute regular commands until

a judging command 1s reached. TUTOR proceeds to #4,

If the end of tha main unit was reached iIn search state,
TUTOR proceeds to #3.




Page

g. Vo L L 4 b e .‘_

STARTY

:m;\.r—mn» O i

begin &

MEln unit
L cebry

in
lar states

"o

an -arrow- executed?

urnt when &
L
| ves
%“
erecute regula COMmMan
(sequentiz 11'0 until a

AP S
}Lh‘)-" 1T = vOﬁnHlﬁ i l."_‘. 1762

g{\D

b

retorn to the

command &t
ached the ~arrow-; process judsing
& commands sequentially; merk
. § the location of -specs-
wait for & response; judge
gtate begins wiih REXT,
_ _lhfgf'(mﬂ—ionga’ék"fOPCﬁ" does a judging command
/.:’ ¢ / .

3
J T
no - match the response?
wait for NEXT {
T -1kay-; do

. cutaed? execute resular comnands
BUTO~eras]ng ’
4 : no followinz

the matched jud-
Zing command until another
the JU.CJ‘!“\,I'}L "ok“'} :

judging command 15 reached
AT oW - was & -specs- executed?
found L | no
L "k Ve
return o the —arro:

H- s
~endarrow~,
or end of unit

T Search for :
7 o an execute regular command
—ATTO -~ .

3
\ following the last -specs-
-Eﬂaarrow-§/' end of executed until another jud-
execute regulsr stote untt ging command is reached
LB TT oW ' -

~ \w;—#"_’—"{ﬁ.'

stop processing at the end of
WaS tha unit; proceed to a n=w

C

4

7




Page 5S¥

"APPENDIX B - SPECIFICATIONS FOR THE INTEPRETER
E.1. FROGRAM STATUS

The elements of the program staetus defined here are those
necessary for the intermediate code interpreter approach to TUTOR
execution; thkey are in addition to those required by the various
TUTOR commancds, which are adequately discrived in other references
(11,151,
F.1.1. 4 JUDRING STATUS BITS, NOGT SAVED IN LINKAGE

0000 - Reguylar state.

NG01 - Post -arrow- recular state.

1800 - Judging state (searchine for judgment).

100 - Post judaing recular state, "ok" judgment.
G110 - Post judaing recular state, "no" judgment.
11C0 - Searching for -specs- with "ok" judgment.
1010 - Searching for -specs—- with "no" juogment.
0101 - Fost =-specs- regular state, "ok" judgment.
0011 - Fost =-specs- rewular state, "no" judgment.
11001 - Searching for -endsrrow=- with "ok" judgment.
1011 - Searchinc for -endarrow- with “no'" judgment.

BE.1.2. 4 UNIT TYPE BITS, SAVED IN LINKAGE

Txxx - Parameters on stack to be resclved.

xTxx - Unit entered by -do-.

xxtx = llnit entered by -join-.

xxx1 - Reserved for future experiments with -helgpop-.

P.1.3. OTHER PARTS SAVFD IN FROCEDURE LINKAGE

FC or INTERPRETER PROGKAM COUNTER; this is & 16 Lbit
pointer into 2 vector of # bit bytes (the gprogram space).

BASE UNIT POINTER, this 1s a 16 bit pointer intec the
program space for interrupt return agpliceations.

LINK cr STACK LINKAGE POINTER, a 16 bit paointer
into a vector of 64 hit clements (the stack).
This pointer is used to allow recursive and
nested subroutine caltls.




Page 56

"B.1.4. OTHER PARTS NOT INVOLVED IN LINKAGE

MAIN UNIT POINTER, a 1¢ bit pointer into the program
space copied from the procram counter on main unit entry.

St or STACK POINTER, a 16 bit pointer into the
steck used by all computational instructions and
all parameter passing mechanisms. The push operation
increments the SP betore storing a value, and the pogp
operation decrements after recoverins a value.

PAKAMETER COUNT, an & bit count of the number of parameters
currently on the stack, set by the parameter passing
rranch and call commands and used by the main unit entry
command.

B.1.5. SEGMENT DEFINITION TARLE

This table has 32 entries, containing:
Segment hase address., 16 pits.
Segment entry size, 4 bits specityina number of bits per entry.
Siun extender, 1 bLit specifying that entries are signed.
Floater, 1 bit specifying entries in floating point format.

Trke first four entries in the seament table are rredefined to:
M) System wide status variables (a special common block).
1) User dependant status variables.
2) User variables.
'2) Common and storagce share this.
4) Router variables (if implemented).

R.2« DATA FORMATS
g.l.1. SIMPLE DATA TYFES

Integers are stored as 64 hit two's complement values. Integer
arithmetic operations use only the leost signiticant 32 wits and
sian extend their resutts to 64 bits, comparison cperations work

over the entire 64 bits as do bit menipulstion operators.

+*loating point data 1is stored in the 64 bit floating point
format supported by the host machine,




Page 60

Alphanumeric datae 1is stored in 8 bits per character, with the
least significant seven bits 1interpreted as F£SCI1 when the most
sienificant bit is zero, and as additional PLATO characters when the
most significant bit is one. When alphanumeric data is packed into
integers, the Llast or richtmost <character occupies the Lleast
siznificant bit positicn.

Toolean data, which is produced as the result of comparisons.,
and is interpreted by the branch on false instruction, is compatable
with PLATO and the toble loockup branch: true is -1 or negative and
fzlse is zero or positive.

B.2.2. MFMORY ADDRESS FORMAT

emory addresses may he provioced either &s the Lleast
sianificent three bytes of a 64 bit stack entry or as three
consecutive tytes from the instruction stream in some cases. The
format is as follows:

XX5SSSSF 00000000 00000000

where X is ignored, S indicates which secment, and 0 specifies an
offset from the base nf that seyment in terms of the word size of
that seament. F indicates the type of the data that the location is
expected to hold (U=integers, 1=real). '

B.2.3. LOOP CONTROL BLOCK FQRMAT

STACK [SP] = increment value.

STACK £SP~-1] timit vatue for index.
STACK [SP-21] initiel value for index.
STACK [SP-33 memory address of index.

i on

B.7.4. LINKAGE WORD FORMAT

The current Llinkage wcrd occupies one stack entry and is
pointed to by the LINK rcgister when executing within a subroutine.
There are fields in this word for a2ll the data of H.1.2 and B.1.3.




Fage A1

B.2.5. FPARAMETER TYPE WORD FORMAT

The parameter type word occupies onée stack entry and consists
cf 37 entries oiving information about up to 32 parameters on the
stick below it; the Lleast significant entry corresponds to the
tonrmost element on the stack below. The two bit fields for each
perameter have the following meaning:

Ox - parameter missina (no corresgondin: stack entry).
10 - the corresponding word is an integer.
11 - the corresconding word is floating point.

B.deb. MASK BYTES FOR STATUS TFSTING

- A npumber of interpreter instructions test the bit patterns of
B.1T.1 and E£.1.2 with the aid of & mask. ALl such masks have the
common format: 11112722, where the bits marked 1 are those of
2.1.1, and those marked 2 «re B.,1.2. '

B.72.7. SPECIEL DATA IN THE FROGRAM SPACE

when constants requirina .more then & bits are stored in the
proszram  spaces, they &are stored most significant byte first. Tris
hol is for 16 bit proaram space address constants, 24 bit data
addrecss constants, and 16, 32, asnd 64 it integer constants. '

B.3. INTERPRETER INSTRUCTIGNS

The instructions Llisted here provide the needed support for
TUTCOR, and the required computational asbility. The actual TUTOR
ection routines are not listed here.

Fach dinstruction i1s dicentified by its first 8 bits, the
instruction number, The action routine for each instruction may
consume additioral bytes containing constant data or addresses, Lut
almost all instructions are tixed format;, if they may consume an
extra byte of information, they Wwill almost always consume it. Most
instructions also have a fixed effect on the stack, always reading
and poppira or creating and pushing a fixed number of entries.

Tnstructions that need variable numbers ot parameters are
implemented with a well definec fixed part containinag the
specifications of the variable parts.




Page 62

'8.3.,1. EXECUTION SEQUENCE CONTROL INSTRUCTIONS

#1 <16 kit address>: branch to that address.

#2 <16 Lit address>: branch on false and pop stack.

#3 <& kit count> <16 bit address>; table lookup branch.
1f the inteaer value of the stack top is greater
tharn the count, the count is used as & value. If
the value is negative, -1 is used. & branch is
made to the address specified by the word audressed
by twice the value plus the aiven address, and the
value is poped from the stack.

#5 <16 bit address>: post index check anao branch.
tises a loop control block on the stack.
1f after incrementing, the index valuye is
out ot hounds, then the stack control tlock
is poped from thke stack, otherwise the branch
is taken. This dinstruction works for both
floatina and fixed point on the basis ot the
type indicated Ly the address in the stack
control block.

%6 <16 bLit address>: precheck loop and hbranch.
lises @ Loop control block on the steack.

Stores the initial value in the index, then
checks 1f it is within bounds. If not.,

the branch 1s takern and the stack control
tlock poped.

#7 <% bit mask> <16 bit address>: branch on status set.

#& <& b1t mask> <16 bit address>: branch on status clear.

#10 <8 tit count> <¢ bit type> <16 bit address>: call.
The count is stored in the parameter count.

The program status save word 1s stored in stack
tocation SP-count, and the LINK word is

pointecd to that location. The least sicniticant

4 vits of the type replace the linkage status bits.,
and control is transtfered to the address.

#11 <8 bit mask>: return conditional on any of the
judging or linksge status bits matching those
set in the mask. The return consists of fetching
the program status save word from the Location
pointecd to by the Link.

#12 <8 bit count> <16 bit address>: branch with parameters.
The count is stored in the parameter count and control
is transfered to the address.




H13

#14

515
H156

#2G
#21

24
#25
#26
E27
Here
REY
532:

#3213
H&48:
4O :
#5(

B.3.3.

E55:
456
#57:
#58:
459
H60:
Hé61:
#62 ¢
HéE3R:
264
H6S ¢

Pauge 63

<R bit signed velue> <& kit count> <list of 16 bit addr>:
special table lookup branch with lLoop exit capabilities.
The value on the stack top and the count combine as in
#3 to index from the second entry in the (ist. If the
selected address 1s zero, execution continues from the
location after the end of the table, otherwise, the
value is used as in #50 and execution resumes at the new
address. '

<& bit mask> <& bit mask> <16 bit «ddress>: special
status checking branch. If any status bit matches

a bit set in the first mask and no bits match the second
maskes, then branch.

<& bit mask>: set bits in status.

<& bhit mask>: clear bits in status.

DATA FETCH AND STORE

<24 bits of data>: push immediate address onto stack.
<% bits of data»: convert integer to aadress by
providing segment information. ’
<64 bits of data>: nush immedizte ¢4 bits onto stack.
<32 pbits of data>: push immediate 32 bits sign extended.
<16 bits ot data>: push immediate 16 bits sign extended.
<8 bits of data>: push immeciate & bits sign extended.
replace address on stack with the data it points to.
<24 bit address>: push data from immediate address.
store data through address below it on stack.
keplace the address with the data, and pog
the oricional copy of the data froa the stack.
<24 bit address>: store data in immediate address.
pop word from stack.
replicate «ord on stack top.
<& bit signed value>: modify SF by adding value.

BINARY INTEGER OPERATORS

replace the top two stack elements bty their sum.
subtract stack top from the value under 1t.
multiply.

divide the stack top into the value unuer it.
produce the remainder as in division.
(SP-1)=(SP) rerlaces the elements comparec.
(5P-1)\=(SP)

(SF-1)>(SP)

(SP=1)>=(SP)

(SP~1)<(SP)

(SP-1)<=(SP)




H6T
HEE s
H6G 2
#70:
H72:
73z
74 :
#75¢:
HP¢6 2
277 ¢

5.3’5'

#&C:
HE&T 2
H27:
#83%:
k84
HES ¢
KE6:
HE 7 :
¥88:
H&¢6G:

BGc
G A
97
98
460 ¢
#100:
¥105¢

Page 64

BINARY FLOATING POINT OPERATORS

replace the top two stack elements by their sum.
subtract stack tor from the value under it.
multiply.
divide the stack top intc the value under it.
($SP~1)=(SP) hoolean comparison for equality.

\ =

>

]

A ANV

BOOLEAN AND BIT OPERATORS

ctoolean and of the top two stack eclements.
boolean or.

boolean exclusive or.

bitwise and, mask, or intersection operator.
Litwise or, merge, or union.

bitwise exclusive ors, or difference.

logical left shift (St-1) by (SF), pop count.
logical rioht shitft.

erithmatic right shift.

circular left shift.,

COMPLEMENTATION OF STACK TOF

INTEGER NEGATE.

FLOATING POINT NEGATE.

BOOLEAN NOT.

GEITWISE NOT OR ONES COMPLEMENT.

ODDS AND ENDS

convert integer to floatiny pcint on stack top.
convert floating point to integer by truncation.
integer part floating point number in floating point.
fractional part of fleocatina point numbuer.
convert floating roint to integer by rouncincg.
replace stack top with integer ccunt ot 1 pits in it.
convert coarse to fine arid (replace top Dy two words).




#1226
#129:
#130:
131
#1322
#1333
#1400z
H¥141 :
¥142
#1433
#146:
147 :

2.3.9.

H251:
b
t
H252:

Fage 65

FUNCTION LIBRARY

replace stack top with sine of stack top (floating point).
cosine (radians).
tangent.

arc sine.

arc cosine.

arc tangent.
log10.

Loge.

antilog1C.
antiloge.
exponentiate.
square root.

SFECIAL TUTOR COMMANDS

pegin new main unit, reset all but perameter
it in program status, copy any parameters down
he staoek, erase terminal screen and reset mode.
if the unit type bits [B.1.2) are COCQ

and there is a currnet =~imain~- unit, call 1it.

#253:
o}

end main unit, wait fcr any armed keygpress
r NEXT. If NEXT is pressed &nd there

is a2 designated next unit to brench tc duc sor
otherwise, fall through to the next unit when
NEXT is pressed.

#255: prefix for other TUTGR commands




Page

INTERMEDIATE CODF COMPILATION EXAMPLES
STONS

cele nt:=nt+n(n2:=nl+1)

INTERMEDIATE CODE, COMMENTARY:

ush address onto stack
4 vit address ot ni
replicate address
fetch n1
nush address onto stack
26 it address of n¢
replicate address
fetch n?
rush constant cnto stack
¢ bit constant 1
intecer add n2+1
store n2:=n2+1
convert the sum into an address
rmake it n(n2:=n2+1)
fetch n{n2:=n2+1)
intecer add n1+n(n2:=n2+1)
store nt:=n1+n(n2:=n2+1)
pop the stack to its origional state

COMMANDS

at 1010

INTERMEDIATE CODE, COMMENTARY:

APPENDIX C -
C.1. EXPRES
TUTOR CODE:
1 #20
-4 <n1>
5 #49
6 ¥28
7 #20
£-10 <né>
11 49
12 He8
13 Hev
14 =1
19 #55
16 #32
7 421
1¢ <n>
19 #2¢
en #55
21 #3e
‘el How
C.2. SIMPLE
TUTOR CODE:
1 #26
-3 =101
4 #1105
& #255
é <ast>

push cornistant onto stack
G 16 bit corstant 1010
convert coarse (1061C) to fine (7¢,352)
TUTOR caommand follows
the code for -at- (pors 2 perameters)




Page

CONDITIONAL CCMMANDS

calcs

nl1,n2:=n3,0,-n3

INTFRMEDIATE CODE AND COMMENTARY:

.3
TUTCR CODE:
1 #20
2-4 <n2>
s #29
6b-& <n1>
9 H3
10 =1
11-12 =36
14 hen
15-17 <n3>
1& #1°
16-20 =40
21 ¥27
27 =0
232 #1
246-25 =40
£h 529
27-2Y <n3>
0 #90
31 #1
22-332 =40
34-35 =14
36-37 =21
Ip-3G =26
L0 432
41 H4 R

push address in which to store result
the address of n?
push data from immediate address
address n1
table lookugp brerch
the maximum index is 1
the 0 entry of the jump table is at 36
push data from immediate address
address nd
branch to end of conditional
zddress of end
push immedizte constant
zerc
branch to end of conditional
sddress ot end
push from immediate address
zddress n3 ,
integer negaete -n3
vtranch to end of conditional
address of end
taeable address for negetive index
table address for zerco index
table address for positive index
store result in asddress below it (n?2)
pop result value ott ot stack

&7




Fage ©6&

C.4. LOOFING COMMANDS

TUTOR CODE: do unitl,-n1:=1,100,5

IMTERMEDIATE C(ODE, COMMENTARY:

820 push index address onto stack
> -4 <n1> «ddress nil
Hev push initial value onto stack
=1 value 1
H27 push final value onto stack
=100 value 100
#27 rush increment value onto stack
=5 value 5
#6 toop control block precheck and setup
=22 sddress beyond end of loogp
#10 call
=0 no parameters
=4 type is do (binary 0100)
=<uniti> address of entry point
¥5 loogp control block post index and branch
=14 address of tocp of loop




(C.h.

LCOPING

TUTOR CODE:

INTERMEDIATE CODE.,

W NN AT -
'
&

- O
-

12-13
14
15-17
1%
1¢
20
22
23

25-26
27-28
26=3{
31
22-3%
35
¢
37
3x
3G
4y
41
42
42
44
45
LE-47

#20
<nt>
#27
=10
827
=2
#27
=-1
#é
=4
#29
<n1>
421
<n>
#28&
H13

Pace

COMMANDS continued)

Tlab,n1:=10,2,-1
nint),2lab,x,1lab
n{nl):=-1

COMMENTARY:
push address
address of n1, loop index
prush immediate constant
initial index wvalue
push immediate constant
final index value
push immediate constant
increment value
loop control block precheck and initialize
sddress beyond ena of loog »
push from immediate memcry address
zddress of n1
convert inteuser to address of n(n1)
specify student variables (n)
fetch ni{n1)
special branch that allows loop exit
por 4 levels before branching
maximum incex value is 1
address for index negative, 2iab
no branch on index zero
address for 1 or positive, 1lab
push data from immediate address
address of n1
convert n1 to the address n(n1)
space attribute for stack tog
push immediate & bits of data
constant
store n(nt):=-1
nop back to the lecop control block
prepare for label inside loop
by temporarily poppino lLlocp control block
*tab is heres, recover Loop cantrol block
ny restoring stack oointer
postcheck loop controt hblock and Loop back
eddress of tcp of lecop

69




Fage 70

"APPENDIX b - COMPILATIUN OF UNITS AND JUDGING SEQUENCES

The first part of this &appenagix is &an example of the structure
of an -~arrow~ -endarrow- block in TUTOR. This is useful as a basis
for understanding the remainder of this appendix which is a Llistino
0f tre 'templates' used in compiling the special judging statements
of TUTOR into the instruction set of appendix B. Throughout this
aprendix, the aspects of TUTOR judeginag relating to its control
structure are emphasized 2t the expense of the data manipulation and
input/output side effects of the commands.

D.1. REDUCTION OF A JUDGING ELOCK TC A FLOGWCHART

TUTOR CODE: FLOWCHART:
N
arrow 1010 arrow 1010
write a write a
W
answer b input
write c
wrong d
write e
specs
answer q judce FJ
write h write h
wrong ] judge no
write i write j [
‘ y
specs
write k
enswer |
write m
wrona n
write o)
endarrow is-ok




Face 71
D.2. A STRUCTURED REDUCTION OF THE SAME CODE

arrcw (1010) 5
write("a");
REFEAT
input.
BFGIN UNTIL specs? OR specsés
1F it=-is("H")
THEN {ok,write("c")}
ELSEIF jt-is("d")
THEN {noswrite("e")}
ELSEIF it-dis("¢™)
THEN {okswrite("h"),;specs1)
ELSFIF dit-is("™i")
THEN {noswrite("j"),specs1}
ELSEIF 3t-3s("L")
THEN {okswrite("m*"),specsel
ELSEIF it-is(”n'")
THEN {noswrite("o"),;specs?)
WHEN
specs1: write("f"),;
specsl: write("k"),
END
UNTIL judyedoks

ltote that the UNTIL clause is & declarastion of the exit blocks
that actually occur din the WHEN clause. This notation is an
sdaptation of that employed by Knuthk [12].




Page 72

10.3. EXPANSICN OF THE TUTQR -unit- COMMAND
1) Generate an endarrow it there is not one between the
tast ~unit-, iudging commands, or -entry- and
the current location.

2) Gather all hranches to the end cof unit to this point.,
for instance from -goto g- or step (10) of (D.8).

2) Generate code:

#11 Retrun conditional on status bits set.
=6 bits -do- and -join- (binary 0000 0110).
253 End of main unit command.

4) Gather all branches to the new unit as 2 main unit
to tris point (-jump-, -help-, -back=-, ~nextnow=-).

5) Generzte code:
#251 Start of main unit command.

6 Gather all branches and calls to the new unit as an
attached unit (-acto-, -do-, -join-, -helpop-).

7) Generate code only if the new unit expects parameters:

HE Branch if bits not set in status.
=g parameter bit (binary (0000 1000,
<addr> to the location detined in step §.

&)Y If this unit can receive parameters, generate code to
: do so. ‘

¢) Gether branch frem step (7) to this point if needed.

10) Generate code:

14 Branch on bit get.
=128 judaing state bit set (1000 QCOO0S.
<addr> address of next judaing command as

specified by (6) in (D,.5).




Page 73

b.4. EXPANSION OF THE TUTOR =~arrow=—= COMMAND

1) Cenerate an endarrow if there was not one between
the last -unit-, judging command, or -entry-
and the current location. :

Z2) Generate the code to compute the parameters to the
—arrow- command (X and Y at which to echo).,
then agenerate the command jitself. This command
channes the state to (0001 xxxx) and must only
te entered in state (0000 xxxx), as auaranteed
by the =~endarrow- nenerated in step (1).

C.5. FXPANSION OF TUTGR JUDGING COMMANDS

1) Cenerate code:

#& Sranchk on all bits reset in status.
=240 all of the judging bits (1111 0600).
<addr> to the address in step (10).

Z2) Generate code if the last judaing command could end
judging or if the last judging commana was -join-
or if this is the first judging command in this
unit before an -arrow-

#& Eranch on atl bits reset in status.
=144 “Yok" and “no"™ bits set (1C01 COOO0).
<addr> to the previous -specs- step (4) of (D.7).

or if there is none, to the -endarrow-
step (4) of (D.&).

3) Cenerate code if the last judging cormand was =-specs-
or ~-join- or if this is the first judcing command
in this unit before a&n -arrow-

HE Franch on all bits reset in status.

=96 the postarrow bit may be set (0110 0000).

<addr> to the first judging command atter the
-arrow- as defined by step (4).

#15 Set kit ir status.

=128 enter search for endarrow state (1000 0000).

H1 Eranch.

<addr> to the -endarrow=- step (7) of (LD.&).




4)

6)

7)

&)

9)

10)

Page

1¥ this is the first judginag command after an -~arrow-
or after the start of a@ -unit- before an -arrow-.
gather branches from step (3) above anc step (8)
of (0.8) here.

If step (4) was followed, generate ccde to reguest
input from the terminal and enter judaing state
(1000 xxxx) it necessary.

Gather branches to the next judging command to here
from -unit- step (10) of (D.3), steps (&) and (9)
here and step (3) of -join- (D.6).

Generate code to compute the parameters to and call
the sppropriate judging command.

1f the specific judaing command never ends judging
then generate code:
#1 Pranch. ‘ :
<gddr> to the next judoing command as specified
by part (6) here or part (%) in (p.2).

I1f the specific judging command sonmetimes ends judging
then generate code:

H? Rranch on bits set in state.
=128 still in judging state (100C CCO0).
<addr> to the next judging command as in (3).

Gather branch from step (1) above.

74




Page 75

'D.h. EXPANSION OF THE TUTOR =-join- COMMAND
1Y Include parts (4) and (&) from (D.3).

2) Generate -join- command complete with any code
for conditional or loopino parts.

2) Generate code:

514 Branch on special status test.

=128 judging state not ended (10CC 0000).

=112 recular bits all reset (C111 Q000).

<addr> to the pext judging command &s in part
(&) of (p.S).

¥14 Branch on special status test.

=128 some search state (1000 00COC).

=16 for -specs- (0CG01 0O0CO).

<addr> to the previous -specs- part (4) of

(D.7) or to the -endarrcw- part
(4) of (D.&). '

H7 Jranch on bit set in status.
=128 judeing bit set (1000 0000).
<addr> to step (6) of (D.8&), the -endarrow-.

D.?7. EXPANSION OF THE TUTOR -specs- COMMAND

1) Include steps (1) throuah (6) from (D.S).
2) Generate ~specs- command and parameters.
3) Generate code:

#1 Unconditional branch.

<addr> to the next judging command.

4) Setur so branches to previous -specs- will arrive
here.

5) Cenerate code for the sgecial commend that changes
to post -specs— state and outputs markup.

6)Y Include step (10) from (D.5) here.




DLk,

()

2)

3)

4)

5)

6)

7)

8)

9>

10)

1)

Page 76

EXPANSION OF THE TUTOR -endarrow- (COMMAND

1¥{f the lLast judagina command was not -0ok= or -no-»
and there is an —-arrow- between the lLast -unit-
and here, generate the -no- judaing command with
all of the steps of (D.5).

Generate code:
HE 8ranch on status bits clear.
=240 recular state (1111 0000).
<addr> to step (112,

1¥f there is no ~arrow=- between the last -unit- and
here, generate code: _
411 Retrun conditional on hit set in status.
=6 ~do- znd -join- bits (000C C110).

Gather branches to ~endarrow- from step (2) Qf (D.5)
and step (3) of (0.4) to this point.

It there was an -arrow- between the last -unit- end
here, then include steg . (5) from (D.7).

1t (5) was not done, generate code:
%15 Set it in status.
=128 enter search for -specs- state (10C0 0000).

Gather branches to -endarrow- from step (2) of (D.5)
and step (3) of (D.6) to this point.

Generate code if there was an -arrow- between the
tast ~unit- and the current point to test
and change the state and branch back to the
first judaing command as specified by step (4)
ot (D.5); the branch back to the first judging
command is executed in judging state after
re-requesting input from the terrinal.

If (8) was not done, gather any branches to the
next judging command to this point.

If (&) was not done, generate code:
g1 Branch.
<addr> to the end of this unit.

Gather branch from step (2) to here.




Page 77

" APFENDIX E - TERMINAL TRANSMISSION CODES AND BUFFEKS
F.1. THE TRANSMISSION CORE, AN EXTENSION OF ASCII

E.1.17. PRINTING CHARACTERS

Firat Digit

£ 1 2 2 4 5 6 7 8 9 A B C D E F
g so b @ F 7 g o
1 1 A Q a ¢ o
2 "2 B R b r g .p
3 #® 3 C S ¢ s z c
4 $ 4 D T d ¢t A &
5 % 5 E U e u
6 & 6 F V f v
7 7 G W g uw " 0 o
8 ( &8 H X h x n
9 ) 9 I ¥ 1y v
A :  J 2 ) z x
B i K [ k { * q
C y < L N 1 1 ¢ = T Y-
D - = M 71 m } # L TR
E . > N " n 7 > * ~
F s/ ?2 0 _ o S &« °




Page 78

£.1.2. CONTROL CHARACTERS (COLUMNS O AND 1)

HEX: NAME : USE s

n0 NUL ignored

1 SOH home (X,M set (0, Y set 512)

(:2 STX use normal character set

G3 ETX use user provided charset

04 EOT end of transmission

(5 ENQ **¥%x enquire

06 ACK ***x acknowledae

oy REL ring bell

(& RS backspace (X set X-&)

0y HT tab

(:a LF linefeed (Y set Y-16)

Ne 'R vertical tab (Y set Y+16)

e FF formfeed

o CR - carriage return

CE ¢ superscript (Y set Y+5) keyboard SUPER1
(tF SI subscript (Y set Y=5) keyboard SuUB1
10 DLE data block prefix (binery data)

11 [ o] araphics - at mode

1¢ DC?2 gragchics = dot mode

12 bC3 gragphics - Line mrode
14 DC4 graphics - extended graphics mode
15 NAK **x* negative acknowledge

16 SYN **%x synchrcnise

17 ETR **x end of transrmission block

18 CAN cancel Line of input

19 £M set mode control

1A sug substitute - set &th bit in next character
1e ESC escape to sgecial controls

1€ FS touch control

10 &GS external device prefix (text mode)
1E RS *

T¢ us *

*x* communications control
> unassigned




"E.1.3. ESCAPE CHARACTERS

ESCAFPE KEY:

o
S

2 B a2 T v i o BES VIR

™~ X &G T

-

zZ

T~

<

¥

I Lt N

HEX:

&0
&1
82
g3
84
85
86
®7
K&
g9
BA
4B
&C
4D
8¢
A 2

90
91
92
a3
G4
95
96
97
95
99
GA
OB
9cC
b
9t
9F

(COLUMNS & AND 9)

NAME : EDITING FUNCTION:

STOF
DATA
LAY

BACK
NEXT
HELF
ANS

COPY copy one word .
EDIT restore word from line buffer
ERASE erase character

(square) copy one character
MICRO

SUFER

sug

SToPY
DATA1
LAB1

BACKI1
NEXT1
HELP1
TERM

CoOPY1 copy rest of Lline
EDIT1 copy rest of edit buffer
ERASE erase word

(square)
FONT MICRGT

{ SUPERT is OE 2
TIMEUP { SUB1 is CF 2}

74




Page 80

-E.?. RUFFER TYPES BETWEEN INTERPRETER AND DEVICE HANDLER

note that all transactions are initiated by the interpreter;
the device handler has an entirely passive role except that it must
abort the interpreter task when the STOP1 key is pressed.

1) vead sinule character from terminal without echo or micro
tatle translation, used for ~-pause- type input. An optional
time Limit may be specified after which the read will
terminate with the TIMEUP code (9F) as the input character.

2) fead 2 characters from terminal without echo or micro,
used to read 2 craracter suffix of TUUCH ccde.

T) write buffer of data (all kinds may be mixea) to the terminal.
Euffer is terminated with one or more null bytes.
This kind of output is used for alt normal TUTOR output
generation commands such as =-write- or =-draw-.

4) vWrite buffer of special data to handlers any of:
a) Size of future ocutput, ,
5) Rotation for future output (crigin specified in (3)).
¢) Micro table specification for dinput echoing.
d) Lineset specification for output and echoing.
e) Charset specification for output and echoing.

5) write ouffer of special line editing setup intormation to
terminal driver.
&) May contain characters that are to be “jkeys"”.
h) #ay contain initial screen location for echoing.
¢) May contain terminal mode for echoing.
¢) Mey contain markug "ok'" or '"no" type message.
e) May contain "copy" buffer for editing trom.

¢) Fead one block or line of input, With Limit of <&> char's

specified and conditions from (5) parts {asbrcse) used

to modify the behavior in conjunction with the read

type modifiers which may atso be ircluded:
&) Re-open the most recent transaction.
n) Inhkibit the use of the EPIT key on the input line.
¢) Force immediate return when N char's have been read.
d) if (a) then erase ltast output when editing starts.
e) if (a) then start editing immediatly.
f) if (a) ther start editing when the user presses a key.
a) 31t (&) ther erase old line when editing begins.




