
A Quick Look at Machine Learning
• As you know, the amount of digital data is growing at an 

enormous rate. E.g. 
– 5 hours of video uploaded to Youtube every second 
– 6000 Tweets per second 
– 60000+ Google search queries per second 
– more than 300,000 carrier-based SMS text messages (US alone) per 

second (~2018) 
– More than 750,000 WhatsApp messages per second (2018) 

• Everybody – companies, governments, researchers – wants to 
“mine” digital data for useful information 

• Statistical machine learning is one of the approaches to tackle 
this “big data” problem. This is an area right now full of  

• hype  
• high-paying jobs for people with expertise



Statistical machine learning 

• Term first defined long ago – 1959 by Arthur Samuel 
(perhaps best known publicly for checkers-playing 
programs): “Field of study that gives computers the ability 
to learn without being explicitly programmed” 

• No precise universally-agreed-upon definition, but often 
generally used to mean: 
– Software that automatically learns to make useful inferences from 

implicit patterns in data 
– Usually, machine learning involves observing a set of examples that 

represent incomplete information about a phenomenon, and then 
attempting to infer something about the process that generated 
those examples 
• Practically, this might mean, for instance, that we could classify the 

examples into different groups according to some features and/or predict 
features/properties of new examples



Statistical machine learning
The examples that machine learning generally starts with are typically called 
“training data” 

E.g. given partial descriptions of some people: 
Abraham Lincoln: USA, President, 193 cm tall    A 
George Washington: USA, President, 189 cm tall    A 
Benjamin Harrison: USA, President, 168 cm tall    B 
James Madison: USA, President, 163 cm tall    B 
Louis Napoleon: France, President, 169 cm tall    B 
Charles de Gaulle: France, President, 196 cm tall    A 

E.g. and labels separating the people into two sets 
A: {A. Lincoln, G. Washington, C. de Gaulle} 
B: {B. Harrison, J. Madison, L. Napoleon} 

One might reasonably infer (“learn”) that the process assigning the people to the 
sets distinguishes tall from short presidents 

The term feature vector is used for the partial descriptions of data items – each 
element of the vector (here three – country, position, height) describes some 
aspect (feature) of the item



Statistical machine learning
There are many approaches to/algorithms/
methods for machine learning – neural networks, 
support vector machines, decision trees, Bayesian 
networks, hidden Markov models, reinforcement 
learning, k-means clustering – but, generally, they 
all try to learn a model that is a generalization of 
the provided examples (the training data) 



Supervised vs. unsupervised learning
Broadly speaking, algorithms can be classified as 
supervised or unsupervised 
•  Supervised learning: 
– Start with a set of feature vector and label pairs.  The 

goal is to derive from these examples a rule that predicts 
the label associated with previously unseen feature 
vectors.  Thus, in the A/B (tall/short presidents) example, 
given 
• “Thomas Jefferson: USA, President, 189 cm tall”  

 the algorithm should predict set A as the proper label 
– Supervised learning is used for many tasks,  including 

things like detecting fraudulent credit card use and 
recommending movies. 



Supervised vs. unsupervised learning
Broadly speaking, algorithms can be classified as supervised 
or unsupervised 
•  Unsupervised learning: 
– Again start with a set of feature vectors. But no labels this time.  

The goal is to uncover/discover latent structure in the set of 
feature vectors. For example, given just the feature vectors from 
the presidents example, an unsupervised learning algorithm 
might separate the people into short vs. tall groups or American 
vs. French groups.  

– Many common unsupervised machine learning techniques are 
designed to find clusters of similar feature vectors – e.g., in 
genetics, groups of related genes.   

– We will learn one of the most common unsupervised basic 
clustering algorithms – k-means clustering.   
• Many other supervised and unsupervised techniques are 

substantially more complex - a day or two won’t do ☺



Feature vectors 
• When using machine learning, choosing “good” features (feature 

extraction) for your feature vectors is very important.  The things you 
want to study often have many potential features but if you select 
too many “the noise” (features irrelevant to your problem) can 
distract from “the signal” 
– Irrelevant features can lead to a bad model, especially if the number of 

features is high relative to number of sample/examples 
– Irrelevant features can greatly slow the learning process.  Machine learning 

algorithms are often quite computationally expensive, with complexity 
growing both with number of examples and number of features. 

– E.g. goal is to learn a model that will predict whether someone likes to 
drink wine.  Some attributes likely relevant: age, nation where they live.  
Others maybe not: handedness, hair color …  
• But feature extraction is difficult, and often relies on intuition (which, of course, can 

be wrong …)



 Feature vectors 
Name Egg-laying Scales Poisonous Cold-blooded # legs Reptile

cobra Yes Yes Yes Yes 0 Yes
rattlesnake Yes Yes Yes Yes 0 Yes
boa No Yes No Yes 0 Yes
alligator Yes Yes No Yes 4 Yes
dart frog Yes No Yes No 4 No
salmon Yes Yes No Yes 0 No
python Yes Yes No Yes 0 Yes
If we start with just cobra and rattlesnake data, a supervised ML algorithm might “learn” that 
it should label as reptiles, things that are egg-laying, scaly, poisonous, cold-blooded and 
legless. But that would incorrectly label a boa constrictor as non-reptile. 
With boa data added to the training set, the new inferred rule might become: 
 scales, cold-blooded, legless <--> reptile 
But that fails for alligator … update rule again: 
 scales, cold-blooded, 0 or 4 legs <--> reptile 
Dart frog – okay! 
But then … salmon – not okay! 
Can try to fix – trying to distinguish, e.g., salmon from alligator but is a losing battle in this 
case … reptile python has same features, using this feature set, as non-reptile salmon 
This is, unfortunately, a common problem in machine learning



Distance metrics

• An important part of the clustering algorithm we’ll study (and of many machine 
learning algorithms) is a distance metric.  We want a way to evaluate the similarity 
between two items.  E.g. “is a boa constrictor more similar to a rattlesnake or to a 
dart frog” 

• First step in doing this is to convert feature vector into a list of numbers 
 rattlesnake: Yes, Yes, Yes, Yes, 0 -> [1, 1, 1, 1, 0] 

boa: [0, 1, 0, 1, 0] 
dart frog: [1, 0, 1, 0, 4] 

• Common metric: Minkowski distance  
– E.g Distance(V1, V2): square root of sum of squared feature differences. 

• In 2D, this is like normal Euclidean distance between 2 points (x1, y1), (x2, y2) on a plane. And like 3D 
distance between points in space. 

– But also “Manhattan distance”: sum the absolute values of feature differences 
• This is like “walking distance” in a city.  If you could fly from an intersection to an intersection that is 

east one block and north one block, the flying distance would be ~1.4 (square root of 2) blocks.  But if 
you have to walk by road, the distance is 2 – one east, then one north (or one north followed by one 
east).



Minkowski distance
• Distance(V1, V2, p) = 

• For p = 2, this is usual Euclidean distance 
• For p = 1, “Manhattan” distance 

( abs(V1i −V2 i )
p

i=1

len
∑ )1/p

The circle is closer to the 
diamond (distance 3 vs 4) 
using p=1, Manhattan 
distance. 

Using p=2, the circle is 
closer to the cross 
(distance 2.8… vs 3). 

Code: distancemetric.py 



Distance metrics
• Note that for the animals example the 0-4 

range of number of legs gives extra (too 
much?) influence to the leg feature  
– Changing it to be a 0 (legless)/1(has legs) feature 

makes the table more reasonable
rattlesnake boa dart frog alligator

rattlesnake 1.414 1.732 1.414
boa 1.414 2.236 1.414

dart frog 1.732 2.236 1.732

alligator 1.414 1.414 1.732

(1.414 – 2 features different, 1.732 – 3 features 
different, 2.236 – 5 different)



Clustering – the process of organizing objects 
into groups whose members are similar in 

some way

• cluster by height – 
horizontal line 

• cluster by weight – 
vertical line 

• cluster by whether or 
not wearing a striped 
shirt – two dotted 
lines (clusters can’t 
always be separated 
with single straight 
line)
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Clustering – an optimization problem
• General goal: find a set of clusters 

that optimizes an objective function 
subject to some constraints. 

• That is, given a distance metric that 
can quantify how close to samples 
are, want to define objective 
function that: 
– Minimizes distances between 

examples in the same cluster, i.e. 
minimizes dissimilarity of examples 
within cluster
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• This is, of course, vague.  The precise details of the chosen 

objective function are critical to success of the clustering.



Clustering
How should we measure closeness of samples in a 
cluster? Cluster variance  
• first compute the mean of the feature vectors of all 

samples in the cluster: 
sum(c)/float(len(c)) where c is a list of the feature vectors 

• then define cluster “variance” (not quite the usual 
definition of variance) as: 

 variance(c) =  

Further, we define, for a set of clusters: 
   dissimilarity = 

distanc
e∈c
∑ e(mean(c),e)2
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Clustering
variance(c) =  

 dissimilarity(C) =  

• cluster “variance” gives us a sense of spread/tightness of 
items in one cluster 

• dissimilarity gives us one number combining all the 
cluster variances 

So, perhaps the optimization problem to be solved for 
clustering is simply to find a set of clusters that minimizes 
dissimilarity?? 

distanc
e∈c
∑ e(mean(c),e)2

Not quite. Why?

variance(c)
c∈C
∑



Clustering
variance(c) =  

 dissimilarity(C) =  

• Simply minimizing dissimilarity would be easy – one 
cluster for each item -> dissimilarity = 0 

• Instead, add a constraint to be maintained while 
minimizing dissimilarity.  Constrain, e.g.,  distance 
between clusters, or max number of clusters. 
– Next we’ll look at one popular algorithm, k-means 

clustering.  It minimizes dissimilarity subject to 
constraint of finding exactly k clusters
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k-means clustering algorithm

K-means clustering is a popular basic method. Other 
common ones – e.g. hierarchical clustering – can be better 
in some situations.   

Goal: partition set of samples into k clusters such that: 
1. Each sample is in the cluster whose centroid is the 

closest centroid to that example 
2. The dissimilarity of the set of clusters is minimized 

Bad news: finding optimal solution computationally very 
expensive  (NP-hard) 
Good news: a greedy approach can be used to find a good 
approximation of the optimum



k-means clustering algorithm

Algorithm: 

 randomly choose k samples as initial cluster centroids 
 while True: 
  1) create k clusters by assigning each sample to   
  closest centroid 
  2) compute k new centroids by averaging the    
  samples in each cluster 
  3) if none of the centroids differs from the previous  
  iteration, return the current set of clusters



k-means clustering algorithm

Source: Intro. to Data Mining, P-N Tan, M. Steinbach, V. Kumar. Addison-Wesley. 2006



K-means resource/demo sites

• Video demo: https://www.youtube.com/
watch?v=zHbxbb2ye3E 

• K-means clustering in Python: A Practical 
Guide: https://realpython.com/k-means-
clustering-python/ 

• Interactive demo: https://
user.ceng.metu.edu.tr/~akifakkus/courses/
ceng574/k-means/
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k-means clustering code
Algorithm: 
 randomly choose k samples as initial centroids 
 while not finished: 
  1) “fill” clusters by assigning each sample to cluster whose centroid it’s closest to 
  2) re-compute cluster centroids by averaging the examples in each cluster 
  3) if none of the centroids differs from the previous iteration, we’re finished 

Code - kmeans.py 
•  contains some classes used to store 

– samples (called “examples” sometimes, so class Example) 
– clusters (class Cluster) 

• kmeans(…) – the main k-means cluster finding algorithm 
• trykmeans(…) – a function to execute several trials of kmeans, choosing best set of 

clusters from those returned by the trials 
• contrivedTest() – simple example two clusters of 2D points 
• contrivedTest2() – simple example with three clusters of points 
• testTeeth() – animal teeth example, not particularly satisfying results 
• Note: contains some commented out pylab code so you can run it in “plain” 

Python (you can easily reactivate  code in plotSamples if you have pylab and want 
to see a plot of the data)



Italian olive oil example 

• “Classification of olive oils from 
their fatty acid composition” 
Forina, M., Armanino, C., 
Lanteri, S., and Tiscornia, E. 
Food Research and Data 
Analysis, 1983  

• 572 olive oils from three 
“areas”/nine “regions” 

• K-means can do a good job 
separating them by region


