
A Quick Look at Machine Learning
• As you know, the amount of digital data is growing at an

enormous rate. E.g.
– 5 hours of video uploaded to Youtube every second
– 6000 Tweets per second
– 60000+ Google search queries per second
– more than 300,000 carrier-based SMS text messages (US alone) per

second (~2018)
– More than 750,000 WhatsApp messages per second (2018)

• Everybody – companies, governments, researchers – wants to
“mine” digital data for useful information

• Statistical machine learning is one of the approaches to tackle
this “big data” problem. This is an area right now full of

• hype
• high-paying jobs for people with expertise

Statistical machine learning

• Term first defined long ago – 1959 by Arthur Samuel
(perhaps best known publicly for checkers-playing
programs): “Field of study that gives computers the ability
to learn without being explicitly programmed”

• No precise universally-agreed-upon definition, but often
generally used to mean:
– Software that automatically learns to make useful inferences from

implicit patterns in data
– Usually, machine learning involves observing a set of examples that

represent incomplete information about a phenomenon, and then
attempting to infer something about the process that generated
those examples
• Practically, this might mean, for instance, that we could classify the

examples into different groups according to some features and/or predict
features/properties of new examples

Statistical machine learning
The examples that machine learning generally starts with are typically called
“training data”

E.g. given partial descriptions of some people:
Abraham Lincoln: USA, President, 193 cm tall A
George Washington: USA, President, 189 cm tall A
Benjamin Harrison: USA, President, 168 cm tall B
James Madison: USA, President, 163 cm tall B
Louis Napoleon: France, President, 169 cm tall B
Charles de Gaulle: France, President, 196 cm tall A

E.g. and labels separating the people into two sets
A: {A. Lincoln, G. Washington, C. de Gaulle}
B: {B. Harrison, J. Madison, L. Napoleon}

One might reasonably infer (“learn”) that the process assigning the people to the
sets distinguishes tall from short presidents

The term feature vector is used for the partial descriptions of data items – each
element of the vector (here three – country, position, height) describes some
aspect (feature) of the item

Statistical machine learning
There are many approaches to/algorithms/
methods for machine learning – neural networks,
support vector machines, decision trees, Bayesian
networks, hidden Markov models, reinforcement
learning, k-means clustering – but, generally, they
all try to learn a model that is a generalization of
the provided examples (the training data)

Supervised vs. unsupervised learning
Broadly speaking, algorithms can be classified as
supervised or unsupervised
• Supervised learning:
– Start with a set of feature vector and label pairs. The

goal is to derive from these examples a rule that predicts
the label associated with previously unseen feature
vectors. Thus, in the A/B (tall/short presidents) example,
given
• “Thomas Jefferson: USA, President, 189 cm tall”

 the algorithm should predict set A as the proper label
– Supervised learning is used for many tasks, including

things like detecting fraudulent credit card use and
recommending movies.

Supervised vs. unsupervised learning
Broadly speaking, algorithms can be classified as supervised
or unsupervised
• Unsupervised learning:
– Again start with a set of feature vectors. But no labels this time.

The goal is to uncover/discover latent structure in the set of
feature vectors. For example, given just the feature vectors from
the presidents example, an unsupervised learning algorithm
might separate the people into short vs. tall groups or American
vs. French groups.

– Many common unsupervised machine learning techniques are
designed to find clusters of similar feature vectors – e.g., in
genetics, groups of related genes.

– We will learn one of the most common unsupervised basic
clustering algorithms – k-means clustering.
• Many other supervised and unsupervised techniques are

substantially more complex - a day or two won’t do ☺

Feature vectors
• When using machine learning, choosing “good” features (feature

extraction) for your feature vectors is very important. The things you
want to study often have many potential features but if you select
too many “the noise” (features irrelevant to your problem) can
distract from “the signal”
– Irrelevant features can lead to a bad model, especially if the number of

features is high relative to number of sample/examples
– Irrelevant features can greatly slow the learning process. Machine learning

algorithms are often quite computationally expensive, with complexity
growing both with number of examples and number of features.

– E.g. goal is to learn a model that will predict whether someone likes to
drink wine. Some attributes likely relevant: age, nation where they live.
Others maybe not: handedness, hair color …
• But feature extraction is difficult, and often relies on intuition (which, of course, can

be wrong …)

 Feature vectors
Name Egg-laying Scales Poisonous Cold-blooded # legs Reptile

cobra Yes Yes Yes Yes 0 Yes
rattlesnake Yes Yes Yes Yes 0 Yes
boa No Yes No Yes 0 Yes
alligator Yes Yes No Yes 4 Yes
dart frog Yes No Yes No 4 No
salmon Yes Yes No Yes 0 No
python Yes Yes No Yes 0 Yes
If we start with just cobra and rattlesnake data, a supervised ML algorithm might “learn” that
it should label as reptiles, things that are egg-laying, scaly, poisonous, cold-blooded and
legless. But that would incorrectly label a boa constrictor as non-reptile.
With boa data added to the training set, the new inferred rule might become:
 scales, cold-blooded, legless <--> reptile
But that fails for alligator … update rule again:
 scales, cold-blooded, 0 or 4 legs <--> reptile
Dart frog – okay!
But then … salmon – not okay!
Can try to fix – trying to distinguish, e.g., salmon from alligator but is a losing battle in this
case … reptile python has same features, using this feature set, as non-reptile salmon
This is, unfortunately, a common problem in machine learning

Distance metrics

• An important part of the clustering algorithm we’ll study (and of many machine
learning algorithms) is a distance metric. We want a way to evaluate the similarity
between two items. E.g. “is a boa constrictor more similar to a rattlesnake or to a
dart frog”

• First step in doing this is to convert feature vector into a list of numbers
 rattlesnake: Yes, Yes, Yes, Yes, 0 -> [1, 1, 1, 1, 0]

boa: [0, 1, 0, 1, 0]
dart frog: [1, 0, 1, 0, 4]

• Common metric: Minkowski distance
– E.g Distance(V1, V2): square root of sum of squared feature differences.

• In 2D, this is like normal Euclidean distance between 2 points (x1, y1), (x2, y2) on a plane. And like 3D
distance between points in space.

– But also “Manhattan distance”: sum the absolute values of feature differences
• This is like “walking distance” in a city. If you could fly from an intersection to an intersection that is

east one block and north one block, the flying distance would be ~1.4 (square root of 2) blocks. But if
you have to walk by road, the distance is 2 – one east, then one north (or one north followed by one
east).

Minkowski distance
• Distance(V1, V2, p) =

• For p = 2, this is usual Euclidean distance
• For p = 1, “Manhattan” distance

(abs(V1i −V2 i)
p

i=1

len
∑)1/p

The circle is closer to the
diamond (distance 3 vs 4)
using p=1, Manhattan
distance.

Using p=2, the circle is
closer to the cross
(distance 2.8… vs 3).

Code: distancemetric.py

Distance metrics
• Note that for the animals example the 0-4

range of number of legs gives extra (too
much?) influence to the leg feature
– Changing it to be a 0 (legless)/1(has legs) feature

makes the table more reasonable
rattlesnake boa dart frog alligator

rattlesnake 1.414 1.732 1.414
boa 1.414 2.236 1.414

dart frog 1.732 2.236 1.732

alligator 1.414 1.414 1.732

(1.414 – 2 features different, 1.732 – 3 features
different, 2.236 – 5 different)

Clustering – the process of organizing objects
into groups whose members are similar in

some way

• cluster by height –
horizontal line

• cluster by weight –
vertical line

• cluster by whether or
not wearing a striped
shirt – two dotted
lines (clusters can’t
always be separated
with single straight
line)

weight

he
ig

ht

Clustering – an optimization problem
• General goal: find a set of clusters

that optimizes an objective function
subject to some constraints.

• That is, given a distance metric that
can quantify how close to samples
are, want to define objective
function that:
– Minimizes distances between

examples in the same cluster, i.e.
minimizes dissimilarity of examples
within cluster

weight

he
ig

ht
• This is, of course, vague. The precise details of the chosen

objective function are critical to success of the clustering.

Clustering
How should we measure closeness of samples in a
cluster? Cluster variance
• first compute the mean of the feature vectors of all

samples in the cluster:
sum(c)/float(len(c)) where c is a list of the feature vectors

• then define cluster “variance” (not quite the usual
definition of variance) as:

 variance(c) =

Further, we define, for a set of clusters:
 dissimilarity =

distanc
e∈c
∑ e(mean(c),e)2

variance(c)
c∈C
∑

Clustering
variance(c) =

 dissimilarity(C) =

• cluster “variance” gives us a sense of spread/tightness of
items in one cluster

• dissimilarity gives us one number combining all the
cluster variances

So, perhaps the optimization problem to be solved for
clustering is simply to find a set of clusters that minimizes
dissimilarity??

distanc
e∈c
∑ e(mean(c),e)2

Not quite. Why?

variance(c)
c∈C
∑

Clustering
variance(c) =

 dissimilarity(C) =

• Simply minimizing dissimilarity would be easy – one
cluster for each item -> dissimilarity = 0

• Instead, add a constraint to be maintained while
minimizing dissimilarity. Constrain, e.g., distance
between clusters, or max number of clusters.
– Next we’ll look at one popular algorithm, k-means

clustering. It minimizes dissimilarity subject to
constraint of finding exactly k clusters

distanc
e∈c
∑ e(mean(c),e)2

variance(c)
c∈C
∑

k-means clustering algorithm

K-means clustering is a popular basic method. Other
common ones – e.g. hierarchical clustering – can be better
in some situations.

Goal: partition set of samples into k clusters such that:
1. Each sample is in the cluster whose centroid is the

closest centroid to that example
2. The dissimilarity of the set of clusters is minimized

Bad news: finding optimal solution computationally very
expensive (NP-hard)
Good news: a greedy approach can be used to find a good
approximation of the optimum

k-means clustering algorithm

Algorithm:

 randomly choose k samples as initial cluster centroids
 while True:
 1) create k clusters by assigning each sample to
 closest centroid
 2) compute k new centroids by averaging the
 samples in each cluster
 3) if none of the centroids differs from the previous
 iteration, return the current set of clusters

k-means clustering algorithm

Source: Intro. to Data Mining, P-N Tan, M. Steinbach, V. Kumar. Addison-Wesley. 2006

K-means resource/demo sites

• Video demo: https://www.youtube.com/
watch?v=zHbxbb2ye3E

• K-means clustering in Python: A Practical
Guide: https://realpython.com/k-means-
clustering-python/

• Interactive demo: https://
user.ceng.metu.edu.tr/~akifakkus/courses/
ceng574/k-means/

https://www.youtube.com/watch?v=zHbxbb2ye3E
https://www.youtube.com/watch?v=zHbxbb2ye3E
https://www.youtube.com/watch?v=zHbxbb2ye3E
https://realpython.com/k-means-clustering-python/
https://realpython.com/k-means-clustering-python/
https://realpython.com/k-means-clustering-python/
https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/
https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/
https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

k-means clustering code
Algorithm:
 randomly choose k samples as initial centroids
 while not finished:
 1) “fill” clusters by assigning each sample to cluster whose centroid it’s closest to
 2) re-compute cluster centroids by averaging the examples in each cluster
 3) if none of the centroids differs from the previous iteration, we’re finished

Code - kmeans.py
• contains some classes used to store

– samples (called “examples” sometimes, so class Example)
– clusters (class Cluster)

• kmeans(…) – the main k-means cluster finding algorithm
• trykmeans(…) – a function to execute several trials of kmeans, choosing best set of

clusters from those returned by the trials
• contrivedTest() – simple example two clusters of 2D points
• contrivedTest2() – simple example with three clusters of points
• testTeeth() – animal teeth example, not particularly satisfying results
• Note: contains some commented out pylab code so you can run it in “plain”

Python (you can easily reactivate code in plotSamples if you have pylab and want
to see a plot of the data)

Italian olive oil example

• “Classification of olive oils from
their fatty acid composition”
Forina, M., Armanino, C.,
Lanteri, S., and Tiscornia, E.
Food Research and Data
Analysis, 1983

• 572 olive oils from three
“areas”/nine “regions”

• K-means can do a good job
separating them by region

