Some additional theory tidbits
=« What if Python didn’t have for/

while loops, but had something Tape
else — e.g. “goto line i” x [TTTT1T11-
=« how does this affect what we @ Read/wrlte head
can compute? Program

» Turing machines: important
theoretical “universal computer” \® L

= memory: infinitely long “tape”
of cells that can be blank or
containOor 1l

A:X

= program: a set of “states” and et
one fundamental operation: T T T s e s a T
if state == g and tape cell ==
set cell toy, state to q’, move = A simulator
This simple computer can compute = A “real” one ©

anything that is computable!

http://en.wikipedia.org/wiki/Turing_machine
https://turingmachinesimulator.com/
http://www.youtube.com/watch?v=cYw2ewoO6c4

goto plus a simpler form of if

while VsS. statement that has no “body”
— just a possible goto linenum
n=0 1.n=0
while n < 100: 2. If ??? goto ??7?
sum =sum +n 3.sum=sum+n
n=n+1 4.n=n+1
print sum 5. 7?77

6. print sum

while vs. goto

n=0

while n < 100:
sum =sum + n
n=n+1

print sum

1.n=0
2.ifn>=100 goto 6
3.sum=sum+n
4d.n=n+1

5. goto 2

6. print sum

http://en.wikipedia.org/wiki/Considered_harmful

More CS theory

= Pvs. NP -the biggest unsolved problem in computer science

= there are many problems that we don’t know efficient algorithms
for, and don’t even know whether or not efficient ones even exist

= Hundreds of real-world have been shown to be NP-complete

= this means that if you solve any one of them, we can
efficiently convert that solution into a solution for the rest of

them. Solve one efficiently = solve all efficiently!

= Longest path (but not shortest path), graph coloring, subset
sum, many puzzles (Sudoku (!, ?, ?, solvers, hardest??,
solver???, solver!, thoughts), minesweeper, etc.), satisfiability
of logic formulas, nonograms (demo: nopuzzle.py)Traveling
Salesperson (movie!?)

= Solve it for extra practice this week == S1 million?

= Demo: sudoku solver using “dancing links” algorithm sudoku.py

http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/Graph_coloring
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf
https://math.stackexchange.com/questions/445540/is-the-sudoku-puzzle-np-complete
https://en.wikipedia.org/wiki/Mathematics_of_Sudoku
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
http://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html
http://www.sudokuwiki.org/sudoku.htm
http://norvig.com/sudoku.html
https://www.gmpuzzles.com/blog/2013/03/ask-dr-sudoku-12-the-line-must-be-drawn-here/
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Travelling_Salesman_(2012_film)
http://www.claymath.org/millennium-problems/p-vs-np-problem

@
7=
—
—
) —
==
) —-
o —
==
) —
. e
o 10 -
.
- —
) —
—
) —
==
) —
==
) —
==
(W%

(W8 (W8]
e | e |t e [LD
L] L J L -

(W8 (&8)
e | e | e | e | e
LJ LJ

(W8 (W8 (W8 (W8
e | e | e e e | | e | e
LJ L] LJ LJ L] - LJ

Human solvable via “global” thinking.
But not solvable by simple “local” https://webpbn.com/survey/dom.html
thinking (single row/col constraints

analysis) algorithm demonstrated In
nopuzzle.py http://www.ijcsonline.com/1JCS/1JCS_2016_0303005.pdf

https://webpbn.com/survey/index.html

e Regarding puzzles:

— Hundreds/thousands of logic puzzle types

« Some cs (and other) research on puzzle design - lots of
mobile games are puzzles — how are good puzzle levels

made — via algorithm? by hand? Are hand-made ones
better?

o Arecommended puzzle site (there are *many* good ones
but this one provides an interesting variety of carefully
hand-crafted ones, once per month, by CS PhD Pavel
Curtis, who works at Microsoft)

http://www.pavelspuzzles.com/aenigmas

http://ianparberry.com/techreports/LARC-2015-02.pdf
http://ianparberry.com/techreports/LARC-2015-02.pdf
http://www.pavelspuzzles.com/aenigmas/

The Halting Problem (later this week)

it’s important to know what we can and can’t compute

It turns out that we cannot create program that can check
all other programs for infinite loops

see, e.g., http://en.wikipedia.org/wiki/Halting_problem

First: demonstrate that we can write programs that create
and execute new programs/functions.
testProgramOnlnput.py

Informal proof that we can’t write doesltHalt

= why can’t we create fully correct doesltHalt function?
(doesltHalt.py)

= To see why, consider function test in doesltHaltTest.py

http://en.wikipedia.org/wiki/Halting_problem

