
Introduction to Computing Using PythonSome additional theory tidbits
▪ What if Python didn’t have for/

while loops, but had something
else – e.g. “goto line i”

▪ how does this affect what we
can compute?

▪ Turing machines: important
theoretical “universal computer”

▪ memory: infinitely long “tape”
of cells that can be blank or
contain 0 or 1

▪ program: a set of “states” and
one fundamental operation:

 if state == q and tape cell == x,
 set cell to y, state to q’, move

This simple computer can compute
anything that is computable!

▪ A simulator

▪ A “real” one ☺

http://en.wikipedia.org/wiki/Turing_machine
https://turingmachinesimulator.com/
http://www.youtube.com/watch?v=cYw2ewoO6c4

while

1. n = 0
2. If ??? goto ???
3. sum = sum + n
4. n = n + 1
5. ???
6. print sum

n = 0
while n < 100:
 sum = sum + n
 n = n + 1
print sum

goto plus a simpler form of if
statement that has no “body”
– just a possible goto linenum

vs.

while vs. goto

1. n = 0
2. if n >= 100 goto 6
3. sum = sum + n
4. n = n + 1
5. goto 2
6. print sum

n = 0
while n < 100:
 sum = sum + n
 n = n + 1
print sum

http://en.wikipedia.org/wiki/Considered_harmful

Introduction to Computing Using Python

More CS theory
▪ P vs. NP - the biggest unsolved problem in computer science

▪ there are many problems that we don’t know efficient algorithms
for, and don’t even know whether or not efficient ones even exist

▪ Hundreds of real-world have been shown to be NP-complete

▪ this means that if you solve any one of them, we can
efficiently convert that solution into a solution for the rest of
them. Solve one efficiently ! solve all efficiently!

▪ Longest path (but not shortest path), graph coloring, subset
sum, many puzzles (Sudoku (!, ?, ?, solvers, hardest??,
solver???, solver!, thoughts), minesweeper, etc.), satisfiability
of logic formulas, nonograms (demo: nopuzzle.py)Traveling
Salesperson (movie!?)

▪ Solve it for extra practice this week == $1 million?

▪ Demo: sudoku solver using “dancing links” algorithm sudoku.py

http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/Graph_coloring
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf
https://math.stackexchange.com/questions/445540/is-the-sudoku-puzzle-np-complete
https://en.wikipedia.org/wiki/Mathematics_of_Sudoku
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
http://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html
http://www.sudokuwiki.org/sudoku.htm
http://norvig.com/sudoku.html
https://www.gmpuzzles.com/blog/2013/03/ask-dr-sudoku-12-the-line-must-be-drawn-here/
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Travelling_Salesman_(2012_film)
http://www.claymath.org/millennium-problems/p-vs-np-problem

http://www.ijcsonline.com/IJCS/IJCS_2016_0303005.pdf

https://webpbn.com/survey/index.html

https://webpbn.com/survey/dom.html
Human solvable via “global” thinking.
But not solvable by simple “local”
thinking (single row/col constraints
analysis) algorithm demonstrated In
nopuzzle.py

• Regarding puzzles:
– Hundreds/thousands of logic puzzle types
• Some cs (and other) research on puzzle design - lots of

mobile games are puzzles – how are good puzzle levels
made – via algorithm? by hand? Are hand-made ones
better?
• A recommended puzzle site (there are *many* good ones

but this one provides an interesting variety of carefully
hand-crafted ones, once per month, by CS PhD Pavel
Curtis, who works at Microsoft)

 http://www.pavelspuzzles.com/aenigmas

http://ianparberry.com/techreports/LARC-2015-02.pdf
http://ianparberry.com/techreports/LARC-2015-02.pdf
http://www.pavelspuzzles.com/aenigmas/

The Halting Problem (later this week)

▪ it’s important to know what we can and can’t compute
▪ It turns out that we cannot create program that can check

all other programs for infinite loops
▪ see, e.g., http://en.wikipedia.org/wiki/Halting_problem
▪ First: demonstrate that we can write programs that create

and execute new programs/functions.
testProgramOnInput.py

▪ Informal proof that we can’t write doesItHalt
▪ why can’t we create fully correct doesItHalt function?

(doesItHalt.py)
▪ To see why, consider function test in doesItHaltTest.py

http://en.wikipedia.org/wiki/Halting_problem

