
• HW 8 due Thursday
• An optional DS assignment, DS8x, has been posted
• It will help with the modify-bfs step of HW8
• If you complete it and submit it, you will can get up to 3

points making up for any DS point missed on earlier DS
assignments.

• No class Wednesday - University “instructional break”
Last time

• graph traversal: breadth first search
• the word ladder problem and HW 8

Today
• finish graphs
• introduce GUIs (Ch 15)

CS2110 Lecture 34 Apr. 12, 2021

Breadth first search
• For unweighted graphs, bfs efficiently finds shortest path from

start node to every other node!
– “Three and a half degrees of separation” https://research.fb.com/

three-and-a-half-degrees-of-separation/
– Wikipedia game: given two topics (with Wikipedia pages), race to get

from one to the other clicking only on Wikipedia page links. https://
en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia https://
en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

– DS8x/HW8 word ladders! wikiGame.py demo
• Links

– http://en.wikipedia.org/wiki/Breadth-first_search
– http://interactivepython.org/courselib/static/pythonds/Graphs/

ImplementingBreadthFirstSearch.html
– animations:

• https://www.cs.usfca.edu/~galles/visualization/BFS.html
• https://visualgo.net/en/dfsbfs?slide=1
• http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/

search.html

https://research.fb.com/three-and-a-half-degrees-of-separation/
https://research.fb.com/three-and-a-half-degrees-of-separation/
https://research.fb.com/three-and-a-half-degrees-of-separation/
https://research.fb.com/three-and-a-half-degrees-of-separation/
https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
http://en.wikipedia.org/wiki/Breadth-first_search
http://interactivepython.org/courselib/static/pythonds/Graphs/ImplementingBreadthFirstSearch.html
http://interactivepython.org/courselib/static/pythonds/Graphs/ImplementingBreadthFirstSearch.html
https://www.cs.usfca.edu/~galles/visualization/BFS.html
https://visualgo.net/en/dfsbfs?slide=1
http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html
http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

Word ladder puzzles

CAT
???
???
DOG

Find 3-letter English words for ??? Positions. Each must differ from
previous and next word in only one location

CAT
COT
???
DOG

CAT
COT
DOT
DOG

This problem is easily representable and solvable
using graphs! DS8/HW8

HW8 Word Ladder problem
Start from wordladderStart.py (see HW8 assignment) with stubs for all the functions you need.

Each part is pretty simple. Do them in order and do not go to next step until you’ve tested
current step thoroughly!

1. Complete function "shouldHaveEdge" so that it correctly returns True when two length-5
words differ at exactly one character position. THIS IS DS8 – USE IT!

2. Complete function "buildWordGraph" to create and return a graph with one node for
each word and an edge for each pair (w1, w2) of words where shouldHaveEdge(w1, w2) is
True. THIS IS DS8 – USE IT!

3. Modify the Node class in basicgraph.py to include distance and parent properties and
getDistance, setDistance, getParent, and setParent methods. PART OF THIS IS DS8x – USE
IT!

4. Modify function bfs in bfs.py to correctly initialize the distance and parent properties and
update them appropriately during the bread-first search. PART OF THIS IS DS8x – USE IT!

5. Complete function "extractWordLadder" to return a list of words representing a shortest
path between the start and end words. See detailed comment on the provided
"extractWordLadder" stub function.

• Breadth first search from ‘scoff’:
– order in which nodes are finished/processed:

• dist 0 scoff
• dist 1 scuff
• dist 2 snuff, stuff
• dist 3 sniff, stiff, staff
• dist 4 skiff

wordsTest.txt

(Steps 3 and 4) modifying Node class and bfs for
wordLadder for HW8 to calculate distance and node

”parents”
0. add distance property and getDistance, setDistance methods.
1. add parent property and getParent and setParent methods to Node class

2. modify bfs:

Mark all nodes ‘unseen’
Set all nodes’ distances to None
Set all nodes’ parents to None
Mark start node ‘seen’ , give it distance 0, and put it on queue

Until queue empty do:
• Remove the front node of the queue and call it the current node
• Consider each neighbor of the current node. If its status is ‘unseen’, mark as

‘seen’, set its parent to current node, set its distance to 1 more than
current node’s distance, and put it on the queue.

• Mark the current node ‘processed’

• Breadth first search from ‘scoff’:
– order in which nodes are finished/processed:

• dist 0 scoff set parent to None
• dist 1 scuff set parent to ‘scoff’ (Node for ‘scoff’)
• dist 2 snuff, stuff set parent of each to ‘scuff’
• dist 3 sniff (first seen from ‘snuff’) set parent to ‘snuff’
• dist 3 stiff, staff (seen from ‘stuff’) set parent of each to ‘stuff’
• dist 4 skiff set parent to ‘stiff’

• extractWordLadder(endNode)
– can use a simple loop:

• Initialize variable, e.g. currentNode, to endNode what is loop
• Add currentNode to a result list stopping
• Update currentNode with currentNode’s parent condition?

Parent property,
BFS, and
extractWordLadder
(step 5)

1

2
2

3

33

4

0

HW8 – what happens when user enters
one word instead of two

• If user provides just one word, a start word, what’s the
end word?
– Code executes bfs.
– All nodes reached will be marked with a distance from start

word. Code chooses as end word any that is maximal distance
– You then extract word ladder between your entered start

word and that maximally distant word

Note: that is start-end ladder is a longest *shortest*
ladder from start word. It is *not* (necessarily) the
longest ladder from start word. Subtle but important
difference

There is another classic graph traversal method called depth first search
(https://en.wikipedia.org/wiki/Depth-first_search).
The basic idea of it is to explore deeply before exploring broadly. You will
study the algorithm in later courses but it is quite concise:

DFS(node):
 mark node ‘processed’ dfs.py
 for each ‘unseen’ neighbor of node:

 mark neighbor seen
 DFS(neighbor)

What if we wanted to find a longer path?

https://en.wikipedia.org/wiki/Depth-first_search

G

H

A

B

F
C

D

E

DFS(A)

 DFS(B)

 DFS(F)

processed (0)

 DFC(D)

 DFS(E)

 DFS(G)

 DFS(C)

 DFS(H)

DONE

DFS starting at node A (on original
demo graph

processed (3)processed (2)

processed (5)

processed (1) processed (4)

processed (7)

processed (6)

Mark all nodes ‘unseen’
Call DFS on desired start node

DFS(node):
• mark node ‘processed’
• for each ‘unseen’ neighbor of node:

• mark neighbor seen
• DFS(neighbor)

Note: number in parentheses corresponds
to order in which nodes were marked
processed

• Depth first search from ‘scoff’:
– order in which nodes are finished/processed:

• scoff, scuff, snuff, sniff, skiff, stiff, staff, stuff

• and wordLadder gives:
– scoff -> scuff -> snuff -> sniff -> skiff -> stiff -> staff -> stuff for scoff-to-stuff

ladder
• for black->white in full words5.text file?

– DFS quickly finds ladder 192 long
– Is that the longest possible? NO! There is one at least 648 long (I don’t know

if there’s a longer one or not.)
– Depth first search might find long paths, but not necessarily longest. In fact

there is no known efficient general algorithm for finding longest path in a
graph!

Graphical User Interfaces in Python

• Chapter 15 of interactive textbook
• tkinter is a commonly used Python layer on top of a

standard GUI toolkit TCL/Tk
• GUIs built using widgets: basic building blocks including

buttons, labels, text, entry fields, scroll bars, etc.
• Steps:

1. Define widgets and layout
2. Specify how to handle “events” (button presses, mouse

clicks, etc.)
3. Start GUI/”event loop”

Getting started with tkinter
1. import tkinter

– NOTE: module was called Tkinter in Python 2. Much web documentation still calls
it Tkinter. Functions, etc.. are the same but make sure to use ‘tkinter’ not ‘Tkinter’
when importing module, calling functions, etc.

2. Before using any other tkinter functions, you must call Tk() to create root/
main window and initialize Tkinter
– e.g myMainWindow = Tk()

3. Next, define other GUI widgets – buttons, labels, entries, and their
placement (via pack/grid function calls)

4. Specify how to handle event (e.g. button presses), typically by defining
“callback functions” that are called by the GUI system when it detects
events

5. Finally, when ready to start execution of the GUI, call mainloop()
– e.g. myMainWindow.mainloop()

Note: mainloop() gives control of execution to Python. It won’t return direct
control to you until after you close/kill the main window. So, no commands/
function calls should follow it in your code. After you call it, you only get an
opportunity to change things when events occur – i.e. when you click the
mouse on buttons, type text in entries, etc.

• tkinter is big – there are long chapters and even
whole books about it. You will use Tkinter in HW9
but not a lot of the features.

• You just need to understand the basics of a few
widget types (Label, Entry, Button, Frame) and
how to respond to events like button presses.

Links/resources for learning tkinter
• Chapter 15 of the interactive text has a LOT of info – more extensive that

most of the other chapters.
• Tkinter info on the official Python site:

https://docs.python.org/3.7/library/tkinter.html
• This tutorial - http://www.tutorialspoint.com/python/

python_gui_programming.htm - does a good job of explaining and
demonstrating the basics and includes several good small examples. It seems
like a good place to start.

• If you want a “real textbook chapter”, Chapter 6 of Kent Lee’s book “Python
Programming Fundamentals” is pretty good. The book is electronically
available to UI students through the UI library (you need to be on the campus
network to access it). http://link.springer.com/chapter/
10.1007%2F978-1-84996-537-8_6

• This site can also very helpful. It’s usually the first hit when I do Google
search (always very useful to me, though I’m not certain all info is up-to-
date): http://effbot.org/tkinterbook/tkinter-index.htm

• Some of the explanations here can be helpful (e.g. explains “pack” better
than many others): http://thinkingtkinter.sourceforge.net

https://docs.python.org/3.7/library/tkinter.html
http://www.tutorialspoint.com/python/python_gui_programming.htm
http://www.tutorialspoint.com/python/python_gui_programming.htm
http://www.tutorialspoint.com/python/python_gui_programming.htm
http://link.springer.com/chapter/10.1007/978-1-84996-537-8_6
http://link.springer.com/chapter/10.1007/978-1-84996-537-8_6
http://link.springer.com/chapter/10.1007/978-1-84996-537-8_6
http://link.springer.com/chapter/10.1007/978-1-84996-537-8_6
http://effbot.org/tkinterbook/tkinter-index.htm
http://thinkingtkinter.sourceforge.net/

Friday (not Wed!)

• More GUI / tkinter

