
• HW 7 grades posted
• DS8 and HW 8 are available

– you MAY NOT import any modules (such as Fraction) to help with HW8 Q1, the
egypt() function. Do the necessary basic math operations directly.

– for buildWordGraph in HW8, it should *not* take several minutes to build the
graph for words5.txt. If it takes several minutes, you probably are using an
O(n^3) algorithm rather than O(n^2), often because you use a linear time
operation such as g.hasNode(…) inside the inner loop of your nested loops. (See
slide 9 of this lecture)

• Last time
– Graph representations: adjacency matrix and adjacency

lists

• Today
– Breadth first search graph traversal and depth first search
– The Word Ladder problem and HW8

CS2110 Lecture 33 Apr. 9, 2021

Representing graphs
• How can we represent general graph in Python?
– Need to keep track of nodes
– Need to keep track of edges

• Several ways to represent graphs have been developed
• List of nodes and list of edges
• Adjacency matrix
• Adjacency lists
• Dictionary of dictionaries

– Efficiency of algorithms that solve graph problems can vary
greatly depending on how graph are representated

– a strong influence on choice is the fact that one of the most
common things needed in graph algorithms is access to
immediate neighbors of a node (nodes that are destinations
of edges for which “current” node is source)

Adjacency matrix

• Appealingly simple to understand and implement
• Use, e.g. a list of lists containing True/False, 0/1, or similar
• NOT the most common graph representation for most problems. Can you

think of a reason why?
– Consider representing Facebook friends graph where each node is a FB user and

an edge exists between two nodes whenever the two are FB friends.
– One billion nodes. Adjacency matrix 1B x 1B in size! Your computer doesn’t have

that much storage. But FB graph can be represented in computer! How?
– The 1B x 1B would be mostly False/0 – most people don’t have huge number of

friends. Should be representable in closer to 1B * median number of friends.
Other representations enable this huge memory savings.

4

3
1

2

5

1 2 3 4 5

1 False True True True False

2 True False False False False

3 True False False True False

4 True False True False False

5 False False False False False

Adjacency list
Use a dictionary with
• Nodes as keys
• Values are lists of neighbor nodes

4

3
1

2

5

KEY
 1
 2
 3
 4
 5

VALUE
[2, 4, 3]
[1]
[1, 4]
[3, 1]
[]

Compared to adjacency matrix:
+ Much less space (when, as is common, most nodes have only a small relatively small
number of neighbors). Facebook graph. People have hundreds of friends, not many milliions

- Query of “does edge (i,j) exist?” not O(1). Must search list associated with node i to see if j is
there. Turns out this is not crucial in many graph algorithms. (could address this using
dictionary of dictionaries but often not necessary)

Adjacency list graph representation
Suitable for both undirected and directed graphs
(and can be use for weighted graphs as well)

 KEY
 CS2230
 CS2820
 CS1210
 CS3330

 VALUE
[CS2820, CS3330]
[]
[CS2230]
[]

4

3
1

2

5

KEY
 1
 2
 3
 4
 5

VALUE
[2, 4, 3]
[1]
[1, 4]
[3, 1]
[]

CS1210

CS2230

CS2820 CS3330

An adjacency list representation for undirected graphs in
Python

Two classes: Node and Graph

Node
• properties:
– name : string
– status: string (we’ll use this to “mark” nodes during

 traversals)
• methods
– getName
– __repr__ : we’ll print nodes as <name>

Note: in your HW8 you’ll add one or more additional properties that
help with traversing/walking through graphs to solve specific problems

basicgraph.py

Adjacency list representation for undirected graphs
Graph
• properties

– nodes: a list of Node objects
– adjacencyLists: a dictionary with all nodes as keys. The value

associated with a key n1 (where n1 is a node) is a list of all the
nodes, n2, for which (n1,n2) is an edge.

• methods
– addNode(node) : nodes must be added to graphs before edges
– addEdge(node1, node2) : presumes both nodes in graph already
– neighborsOf(node) : returns list of neighboring nodes
– getNode(name)
– hasNode(node)
– hasEdge(node1, node2) : return T if edge node1-node2 in graph
– __repr__

basicgraph.py

G

H

A

B

F

KEY
 A
 B
 C
 D
 E
 F
 G
 H

VALUE
[B,C,E,H]
[A,C,D,F]
[A,B,F]
[B]
[A,G]
[B,C]
[E,H]
[A,G]

C

D

E

This graph is generated by genDemoGraph() in basicGraph.py

Note: for exams, you need to be able to 1) draw graph given adjacency list
dictionary, and/or 2) show adjacency list dictionary given graph drawing

DS8 buildWordGraph
Be careful in buildWordGraph - what is potentially slow about this?

for w1 in wordList:
for w2 in wordList:
 … getNode(w1)…

 … getNode(w2)…

Instead, recommend organizing as

for n1 in g.nodes:
 for n2 in g.nodes:
 If shouldHaveEdge(n1.getName(), n2.getName())

OR

for I in range (len(g.nodes)):
 N1 = g.nodes[I]
 for j in range(i, len(g.nodes)):

N2 = g.nodes[j]
If …

G

H

A

B

F

KEY
 A
 B
 C
 D
 E
 F
 G
 H

VALUE
[B,C,E,H]
[A,C,D,F]
[A,B,F]
[B]
[A,G]
[B,C]
[E,H]
[A,G]

C

D

E

As I’ve said, many real-world problems can be represented as
problems involving graphs. The algorithms to solve those problems
often involve graph traversals, organized exploration or
“walkthroughs” of the graph.
Two famous ones are: depth-first search and breadth-first search. I
will present breadth-first search.
You will not be responsible for knowing the details of breadth-first
search (for exam purposes) but you need to understand it well
enough to use and extend it in HW8.

Classic breadth-first search (bfs)
The goal of classic bfs is simply to travel to/explore, in an efficient and organized fashion, all nodes
reachable from some given startNode. (The general goal of the other classic traversal, depth-first-
search, is the same,. It just explores in a different order.)
First, we’ll add a property, status, to nodes. Legal values will be ‘unseen’, ‘seen’, and ‘processed’. The
traversal process will use the values as it encounters nodes to keep from revisiting/re-processing
already-processed nodes.

The algorithm in words:
1. Mark all nodes as ‘unseen’
2. Initialize an empty queue (you implemented a queue class in DS6. “First-in first-out”)
3. Mark the starting node as ‘seen’ and place it in the queue.

4. Remove the front node of the queue and call it the current node
5. Consider each neighbor of the current node. If its status is ‘unseen’, mark it as seen and put it

on the queue.
6. Mark the current node ‘processed’ (note: this step can be left out).
7. If queue not empty go back to step 4.

This will explore all node reachable from the startNode in a breadth-first manner.
• Suppose startNode has neighbors n1 and n2. “Breadth first manner” means it travels start to n1

and then and then from start to n2 before exploring “beyond n1” – the process moves “broadly” out
from the start a single step at a time.

• This enables a very simple modification of bfs to compute shortest (unweighted) distances from
start to all other nodes in the graph

G

H

A

B

F
C

D

E

 Q: A

 Q: B, C, E, H

 Q: C, E, H, D, F

seen

seen

seen

seen

seen

curr: A Q:

curr: C Q: E, H, D, F

 Q: E, H, D, F

curr: E Q: H, D, F

curr: B Q: C, E, H

 Q: H, D, F, G

curr: H Q: D, F, G

 Q: D, F, G
curr: D Q: F, G
 Q: F, G
curr: F Q: G

 Q: G
curr: G Q:
 Q: DONE

BFS starting at node A

seen

seen

seen

processed
processed

processed

processed
processed

processed

processed

processed

Mark all nodes ‘unseen’
Mark A ‘seen’ and put A on queue Q
Until queue empty do:
• Remove the front node of the queue and call it

the current node
• Consider each neighbor of the current node. If

its status is ‘unseen’, mark as ‘seen’ and put it
on the queue.

• Mark the current node ‘processed’

BFS

If we don’t consider a node to be fully explored until
its status value becomes “processed”, then BFS
explores the graph in “levels”
• first level 0 – items distance 0 from start
• then level 1 – items distance 1 from start
• then level 2
• Etc.
• This is very useful.

We can make a very slight change to bfs to record
distance of each node from start!

G

H

A

B

F
C

D

E

BFS starting at node A

Mark all nodes ‘unseen’
Mark A ‘seen’ and put A on queue Q
Until queue empty do:
• Remove the front node of the queue and call it

the current node
• Consider each neighbor of the current node. If

its status is ‘unseen’, mark as ‘seen’ and put it
on the queue.

• Mark the current node ‘processed’

0

1

1

1

1
2

2

2

Mark all nodes ‘unseen’, and distance None
Mark A ‘seen’, set A’s distance to 0, and put A on
queue Q
Until queue empty do:
• Remove the front node of the queue and call it

the current node
• Consider each neighbor of the current node. If

its status is ‘unseen’, mark as ‘seen’, set its
distance to one more than current node’s
distance and put it on the queue.

• Mark the current node ‘processed’

Add a distance property to
Node
Update node distance
when first seen

G

H

A

B

F
C

D

E

0

1

1

1
2

2

2

1

Bread first search
• For unweighted graphs, bfs efficiently finds shortest path from start

node to every other node!
– “Three and a half degrees of separation” https://research.fb.com/three-

and-a-half-degrees-of-separation/
– Wikipedia game: given two topics (with Wikipedia pages), race to get from

one to the other clicking only on Wikipedia page links. https://
en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia https://
en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

– DS8/HW8 word ladders!

• Links
– http://en.wikipedia.org/wiki/Breadth-first_search
– http://interactivepython.org/courselib/static/pythonds/Graphs/

ImplementingBreadthFirstSearch.html
– animations:

• https://www.cs.usfca.edu/~galles/visualization/BFS.html
• https://visualgo.net/en/dfsbfs?slide=1
• http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

https://research.fb.com/three-and-a-half-degrees-of-separation/
https://research.fb.com/three-and-a-half-degrees-of-separation/
https://research.fb.com/three-and-a-half-degrees-of-separation/
https://research.fb.com/three-and-a-half-degrees-of-separation/
https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
http://en.wikipedia.org/wiki/Breadth-first_search
http://interactivepython.org/courselib/static/pythonds/Graphs/ImplementingBreadthFirstSearch.html
http://interactivepython.org/courselib/static/pythonds/Graphs/ImplementingBreadthFirstSearch.html
https://www.cs.usfca.edu/~galles/visualization/BFS.html
https://visualgo.net/en/dfsbfs?slide=1
http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

Word ladder puzzles

CAT
???
???
DOG

Find 3-letter English words for ??? Positions. Each must differ from
previous and next word in only one location

CAT
COT
???
DOG

CAT
COT
DOT
DOG

This problem is easily representable and solvable
using graphs! DS8/HW8

HW8 Word Ladder problem
Start from wordladderStart.py (see HW8 assignment) with stubs for all the functions you
need.

Each part is pretty simple. Do them in order and do not go to next step until you’ve tested
current step thoroughly!

1. Complete function "shouldHaveEdge" so that it correctly returns True when two
length-5 words differ at exactly one character position. THIS IS IN DS8 – USE IT!

2. Complete function "buildWordGraph" to create and return a graph with one node for
each word and an edge for each pair (w1, w2) of words where shouldHaveEdge(w1,
w2) is True. THIS IS IN DS8 – USE IT!

3. Modify the Node class in basicgraph.py to include distance and parent properties and
getDistance, setDistance, getParent, and setParent methods.

4. Modify function bfs in bfs.py to correctly initialize the distance and parent properties
and update them appropriately during the bread-first search.

5. Complete function "extractWordLadder" to return a list of words representing a
shortest path between the start and end words. See detailed comment on the
provided "extractWordLadder" stub function.

Next week

• Monday:
• finish graphs:
• Modifying bfs for use in HW8
• Finding a longer path with depth first search

• introduce graphical user interface
programming

• W, F
– Graphical user interfaces in Python

