
CS2110 Lecture 30   Apr. 2, 2021
• HW 7 due next Wednesday 
Last time 

• selection sort 
• insertion sort 
• demo of plotting/graphing using matplotlib/pylab 

Today 
• continue sorting - merge sort, Quicksort



selection sort

Given: 
L[0:i] sorted and in final position 
L[i:] unsorted 

How do we “grow” solution?

Sorted and in final position Unsorted

i

Find min in unsorted part and move it to position i



Sorting 
• Another simple approach – insertion sort. 

Slightly different main step picture than for 
selection sort

Sorted, not yet in final position Unsorted

i
Given: 

L[0:i] sorted (but not necessarily in final position) 
L[i:] unsorted 

How do we “grow” solution?

Move L[i] into correct spot (shifting larger ones in 
L[0:i] one slot to the right



Idea: repeatedly move first item in unsorted part to 
proper place in sorted part 
    5 23 -2 15 100 1 8 2 
Sorted          Not yet sorted 
          5 23 -2 15 100 1 8 2 
5          23  -2 15 100 1 8 2 
5 23         -2 15 100 1 8 2 
-2 5 23        15 100 1 8 2 
-2 5 15 23       100 1 8 2 
-2 5 15 23 100      1 8 2 
-2 1 5 15 23 100     8 2 
-2 1 5 8 15 23 100    2 
-2 1 2 5 8 15 23 100  



Insertion sort

• running time of insertion sort? 
– best case? 
• sorted already O(n) 

– worst/average case? 
• O(n2) 



Running time of selection sort and 
insertion sort

• Selection sort 
– O(n2) always – worst, best, average case.  It always searches the entire 

unsorted portion of the list to find the next min.  No distinction 
between best/worst/average cases. 

• Insertion sort 
– In best case, inner while loop never executes, so O(n) 
– In worst case, inner while loop moves ith item all the way to L[0].  This 

yields the familiar sum,  0 + 1 + 2 + … + n, once again. Thus, O(n2). 
– Average case is also O(n2) 
– Among O(n2) sorts, insertion sort is good one to remember.  In 

practice, it works well on “almost sorted” data, which is common.  It is 
sometimes used as a “finish the job” component of hybrid sorting 
methods – use an O(n log n) sorting method until the list is “almost 
sorted, then switch to insertion sort to finish. 



HW 7 asks you to compare sorting methods and use Pylab to make charts/
graphs of their running time behavior 

Making meaningful graphs is often not easy 
• experiment to find good sizes for data 

– test on large enough data to clearly understand differences/similarities (for some 
sorts, need lists hundreds of thousands and/or millions long) 

• Experiment on sorted, reverse sorted, nearly sorted, random data



def compareSorts(minN = 1000, maxN=20000, step=2000):     
 listSizes = list(range(minN, maxN, step))      
 selectionSortTimes = []     
 insertionSortTimes = []     
 for listSize in listSizes:         
  listToSort = mixup(list(range(listSize))) 
        startTime = time.time()         
  selectionSort(listToSort)        
  endTime = time.time() 

 selectionSortTimes.append(endTime-startTime)                
 startTime = time.time()         

  insertionSort(listToSort)         
  endTime = time.time()         
  insertionSortTimes.append(endTime-startTime)     
 pylab.figure(1)     
 pylab.clf()     
 pylab.xlabel('List size')     
 pylab.ylabel('Time (s)')     
 pylab.title("Selection (blue) vs Insertion (red) sort on random data")     pylab.plot(listSizes, 
selectionSortTimes, 'bo-')     
 pylab.plot(listSizes, insertionSortTimes, 'ro-')

Comparing sorting functions via timing and graphing

Lec30a.py 
Lec30b.py



How might we sort faster than insertion sort, selection sort, 
and other simple sorts? Can we do better than O(n^2)?

Try a divide-and-conquer approach: 
– Divide problem into subproblems 
– Solve subproblems recursively 
– Combine results 

Binary search is a special case of divide and conquer.   
– Check middle element and create one subproblem of half the size 
– This yielded speed-up from O(n) to O(log n) 

Many problems benefit from divide and conquer approach 



How can we use divide-and-conquer to sort?

1. divide list into two (almost) equal halves 
2. sort each half 
3. combine two sorted halves into fully sorted result 

unsorted

unsorted unsorted

sorted sorted

sorted

Is it clear how to implement each step?

recursively!



Sorting by divide and conquer

1. divide list into two (almost) equal halves 
• O(1) 

2. recursively sort each half 
• Make two recursive calls 

3. combine two sorted halves into fully sorted result 
• Merge algorithm -> O(n) 



Merge sort

• Implementation in lec30sorts.py 
• Running time? 
– In more advanced computing classes, learn about 

things like recurrence equations.  Can express 
running time via: 

T(1) = c 
T(n) = time for recursive calls + divide time + combine time 
   = 2 * T(n/2)     + O(1)       + O(n) 

– we can also analyze by looking at “recursion tree” 
and adding up times … 

– Get?



Recursion tree for analyzing merge sort running time

1 * 1 +  1 * n = O(n)

2 * 1 + 2 * n/2 = O(n)

n/2 * 1 + n/2 * 2 = O(n)

… n one-element lists (base cases) …

  Tdiv      Tmerge

Total: O(n) * # of levels = ? 

How deep 
does this go? 
How many 
levels? 

n * O(1) = O(n)

… n/2 two-element lists …

Log n 

 O(n log n)



Mergesort

• Merge sort is very famous sorting algorithm.  Classic example of power 
of divide and conquer. Yields “optimal” O(n log n) sort.  Much faster than 
O(n2) algorithms. 

• Can be implemented non-recursively (but most people find the rec. 
version much easier to implement) 

• One possible concern? Standard implementations require O(n) 
additional space 

• Python’s built-in sort is (in most Python implementations) Timsort 
(named after Tim Peters), a hybrid drawing from mergesort and 
insertion sort.  Has O(n log n) average and worst-case time (like 
mergesort) and O(n) best case time (like insertion sort) 
– news in 2015?! Bug found in Timsort implementations in Python, Java, Android! 

Had been there for a while … 

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/


Another divide-and-conquer style sorting algorithm: quicksort

1. divide list into two parts, one containing all elements < some number (called 
“the pivot”), the other containing all elements >= the pivot number 

2. Recursively sort parts 
3. combine two sorted halves into fully sorted result 

unsorted

< “pivot” item >= pivot item

sorted sorted

sorted

Is it clear this time how to implement each step?



Quicksort
• Divide step 

– mergesort: easy – just cut in half O(1) 
– quicksort: takes work – scan through entire list putting elements in > or < 

(vs pivot) part O(n) 
• Combine step 

– mergesort: takes work – step through subproblem solutions, merging 
them O(n) 

– quicksort: easy, we’re done! Just put parts together O(1) 
• Subproblems 

– mergesort: the two subproblems always half the size 
– quicksort: subproblem size depends of value of item you choose as pivot.  

What pivot would yield half-sized subproblems? Can you find that pivot 
item easily? 
• poor pivot choices can yield poor sorting performance 
• good practical pivot choices: 1) median of first, middle, last items, 2) random 

item



Possible quicksort of: [15, 4, 2, 99, 6, 3, 
25, 26, 8]

If initial pivot is 8, divide into:  
4, 2, 6,3                               8, 15, 99, 25, 26 

After those are (recursively) sorted 
2, 3, 4, 6         8, 15, 25, 26, 99 

Combine for result: 
2, 3, 4, 6, 8, 15, 25, 26, 99



Possible quicksort of: 15 4 2 99 6 3 25 26 8
If instead 99 chosen as pivot, divide into:  
     15 4 2 6 3 25 26 8                                99 

After those are (recursively) sorted 
2 3 4 6 8 15 25 26          99 

Combine for result: 
2 3 4 6 8 15 25 26 99 

Still “works” so why do I tell you to worry about pivot choice? Because if you work out 
the math, having mostly pretty even splits yields O(n log n) running time, while 
having most very uneven splits yields (n^2) running time. With uneven splits, you can 
get n levels of recursion rather than log n levels. And since each level takes O(n) work 
(mainly to do the partition), that yields O(n^2) instead of O(n log n).  

SO,  pivot choice is VERY important in quicksort.  Good pivot choice -> great sorting 
method. Poor pivot choice – better to just use insertion sort or some simpler O(n^2) 
sort. 

And simple choices of pivot – e.g. first element or last element, yield terrible behavior 
in simple, reasonably common situations such as the list already being sorted. 

Analysis with helpful diagrams at, e.g. https://www.khanacademy.org/computing/
computer-science/algorithms/quick-sort/a/analysis-of-quicksort

https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort
https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort
https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/analysis-of-quicksort


Quicksort
• Quicksort has worst case running time of O(n2) 
• BUT average case O(n log n) and if we choose pivot properly we can make 

worst case very very unlikely.  (The detailed mathematical analysis of this is not 
so easy). 

• Unlike mergesort, is “in place” – does not require O(n) extra space).   
• When implemented properly is excellent and very commonly used sorting 

method in the real world.  
• Be careful if you implement it yourself.  Easy to get slightly wrong. E.g. the 

code at the first (and second) result returned when I googled - quicksort 
python – is correct (in that it properly sorts) but a poor implementation 
because it chooses pivot badly (try it on an already sorted list of, say, 10000 or 
more elements, or even a list containing many many identical elements!?) – 
qsbad.py 

• Good standard pivot choice – “median of three” – choose as pivot the median 
value among first, middle, and last elements in the given list. E.g. for [15, 4, 2, 
99, 6, 3, 25, 26, 8], choose median of 15, 6, 8, which is 8 
– In this case, good – 4, 2, 3, 6 will be in “less-than” partition, 8, 15,  99, 25, 26 will be in 

“greater-or-equal” partition. 



• Many visualizations of sorting algorithms on the web: 
– https://www.cs.usfca.edu/~galles/visualization/

ComparisonSort.html, http://www.sorting-algorithms.com, 
http://sorting.at 

– https://www.youtube.com/watch?v=kPRA0W1kECg 
– dance group demonstrating sorting algorithms: 
– https://www.youtube.com/watch?v=ROalU379l3U  
– https://www.youtube.com/watch?v=ywWBy6J5gz8 (but poor 

pivot choice! ☺) 

• Next time: 
• Greedy algorithms 
• Begin optimization and graph algorithms

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://www.sorting-algorithms.com/
http://sorting.at/
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=ywWBy6J5gz8

