
CS2110 Lecture 29 Mar. 31, 2021

• Important schedule change: quiz 4 changed to April 23
• DS7 due today by 5pm
• HW7 available, due next Wednesday night

Today
• Basic sorting algorithms:

• Selection sort
• Insertion sort

• More efficient sorting algorithms

DS 7 and HW 7
• Need to use Pylab module to plot charts/graphs. Modules/packages like

Pylab can be annoying to install. I strongly recommend you download the
free Anaconda distribution (Python + Spyder IDE plus many pre-installed
packages) from anaconda.com for use in these assignments.

HW 7 ask you to compare sorting methods and use Pylab to make charts/
graphs of their running time behavior

Making meaningful graphs is often not easy
• experiment to find good sizes for data

– test on large enough data to clearly understand differences/similarities (for some
sorts, need lists hundreds of thousands and/or millions long)

• Experiment on sorted, reverse sorted, nearly sorted, random data

Sorting (https://www.youtube.com/watch?v=k4RRi_ntQc8)

It’s mostly a “solved” problem – available as excellent built-in functions – so why study?
The variety of sorting algorithms demonstrate a variety of important computer science
algorithmic design and analysis techniques.
Sorting has been studied for a long time. Many algorithms: selection sort, insertion
sort, bubble sort, radix short, Shell short, quicksort, heapsort, counting sort, Timsort,
comb sort, bucket sort, bead sort, pancake sort, spaghetti sort … (see, e.g., wikipedia:
sorting algorithm)

Why sort? Searching a sorted list is very fast, even for very large lists (log n is your
friend). So if you are going to do a lot of searching, sorting is often excellent prep.

Should you always sort? (Python makes it so easy …)
• We can search an unsorted list in O(n), so answer depends on how fast we can sort.
• How fast can we sort? Certainly not faster than linear time (must look at, and maybe

move, each item). In fact, in general we cannot sort in O(n). Best “comparison-
based” sorting algorithms are O(n log n)

• So, when should you sort? If, for example, you have many searches to do. Suppose
we have n/2 searches to do.
– n/2 linear searches ! n/2 * O(n) ! O(n2)
– sort, followed by n/2 binary searches ! O(n log n) + n/2 * O(log n) ! O(n log n) + O(n log

n) ! O(n log n) for large n, this is much faster

https://www.youtube.com/watch?v=k4RRi_ntQc8

Today’s news - this year’s Turing Award winners
(“the Nobel Prize of computer science”)

• https://www.nytimes.com/2021/03/31/technology/turing-award-aho-
ullman.html

•

https://www.nytimes.com/2021/03/31/technology/turing-award-aho-ullman.html
https://www.nytimes.com/2021/03/31/technology/turing-award-aho-ullman.html

Sorting

• Python built-in methods, functions
– myList.sort()
– sorted(mylist)
– sorted(mylist, key=lambda item: item[2])

• first, a simple sort
– how you would sort if given, say, a big list of numbers

written on a page? How would you write down the
sorted version of the list: 5 23 -2 15 100 1 8 2?

 5 23 -2 15 100 1 8 2 ! -2 1 2 5 8 15 23 100

Idea: repeatedly find min in unsorted part and move it
to sorted
 5 23 -2 15 100 1 8 2
Sorted Not yet sorted
 5 23 -2 15 100 1 8 2
-2 5 23 15 100 1 8 2
-2 1 5 23 15 100 8 2
-2 1 2 5 23 15 100 8
-2 1 2 5 23 15 100 8
-2 1 2 5 8 23 15 100
-2 1 2 5 8 15 23 100
-2 1 2 5 8 15 23 100
-2 1 2 5 8 15 23 100

Sorting – selection sort

Given:
L[0:i] sorted and in final position
L[i:] unsorted

How do we “grow” solution?

Sorted and in final position Unsorted

i

Find min in unsorted part and swap it with item
currently at position i

Sorting – selection sort

def selectionSort(L):
 for i in range(len(L)):
 # swap min item in unsorted region with ith
item

Sorted and in final position Unsorted

i

Sorted and in final position Unsorted

i

Sorting – selection sort

def selectionSort(L):
 i = 0
 # assume L[0:i] sorted and in final position
 while i < len(L):
 minIndex = findMinIndex(L, i)
 L[i], L[minIndex] = L[minIndex], L[i]
 # now L[0:i+1] sorted an in final position.
 # Reestablish loop invariant before continuing.
 i = i + 1
 # L[0:i] sorted and in final position

Sorted and in final position Unsorted

i

return index of min item in L[startIndex:]
assumes startIndex < len(L)

def findMinIndex(L, startIndex):
 minIndex = startIndex
 currIndex = minIndex + 1
 while currIndex < len(L):
 if L[currIndex] < L[minIndex]:
 minIndex = currIndex
 currIndex = currIndex + 1
 return minIndex

Sorting – selection sort

• running time – Big O?
• let n be len(L)
• findMinIndex(L,startIndex) - number of basic

steps?
– n-startIndex

• selectionSort(L)
– calls findMinIndex(L,i) for i = 0..n-1
– so total steps = (n-0) + (n-1) + (n-2) + … + 1 = ?
– so, O(n2)

Sorting

• lec29sorts.py code has sorting functions plus
– timing functions timeSort, timeAllSorts
– mixup function that takes a list as input and

randomly rearranges items (note: contains
commented out code that demonstrates incorrect
random mixup algorithm as well)

Sorting
• Another simple approach – insertion sort.

Slightly different main step picture than for
selection sort

Sorted, not yet in final position Unsorted

i
Given:

L[0:i] sorted (but not necessarily in final position)
L[i:] unsorted

How do we “grow” solution?

Move L[i] into correct spot (shifting larger ones in
L[0:i] one slot to the right

Idea: repeatedly move first item in unsorted part to
proper place in sorted part
 5 23 -2 15 100 1 8 2
Sorted Not yet sorted
 5 23 -2 15 100 1 8 2
5 23 -2 15 100 1 8 2
5 23 -2 15 100 1 8 2
-2 5 23 15 100 1 8 2
-2 5 15 23 100 1 8 2
-2 5 15 23 100 1 8 2
-2 1 5 15 23 100 8 2
-2 1 5 8 15 23 100 2
-2 1 2 5 8 15 23 100

Insertion sort

• running time of insertion sort?
– best case?
• sorted already O(n)

– worst/average case?
• O(n2)

Running time of selection sort and
insertion sort

• Selection sort
– O(n2) always – worst, best, average case. It always searches the entire

unsorted portion of the list to find the next min. No distinction
between best/worst/average cases.

• Insertion sort
– In best case, while loop never executes, so O(n)
– In worst case, while loop moves ith item all the way to L[0]. This yields

the familiar sum, 0 + 1 + 2 + … + n, once again. Thus, O(n2).
– Average case is also O(n2)
– Among O(n2) sorts, insertion sort is good one to remember. In

practice, it works well on “almost sorted” data, which is common. It is
sometimes used as a “finish the job” component of hybrid sorting
methods – use an O(n log n) sorting method until the list is “almost
sorted, then switch to insertion sort to finish.

def testSort(sortFunction, title= ‘’, minN = 1000, maxN=20000,
 step=2000):
 listSizes = list(range(minN, maxN, step))
 runTimes = []
 for listSize in listSizes:
 listToSort = mixup(list(range(listSize)))
 startTime = time.time()
 sortFunction(listToSort)
 endTime = time.time()
 runTimes.append(endTime-startTime)
 pylab.figure(1)
 pylab.clf()
 pylab.xlabel('List size') lec29sorts.py
 pylab.ylabel('Time (s)') lec29b.py
 pylab.title(title)
 pylab.plot(listSizes, runTimes, 'ro-')

• more efficient sorting:
– merge sort
– Quicksort

• Many visualizations of sorting algorithms on the
web:
– http://www.sorting-algorithms.com, http://sorting.at,

https://www.cs.usfca.edu/~galles/visualization/
ComparisonSort.html

– https://www.youtube.com/watch?v=kPRA0W1kECg
– https://www.youtube.com/watch?v=ROalU379l3U

(dance group demonstrating sorting algorithms …)

Next time

http://www.sorting-algorithms.com/
http://sorting.at/
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=ROalU379l3U

