CS2110 Lecture 29 Mar. 31, 2021

« Important schedule change: quiz 4 changed to April 23
« DS7 due today by 5pm
« HW?7 available, due next Wednesday night

Today
e Basic sorting algorithms:
e Selection sort
* [nsertion sort
* More efficient sorting algorithms



DS 7 and HW 7

« Need to use Pylab module to plot charts/graphs. Modules/packages like
Pylab can be annoying to install. | strongly recommend you download the
free Anaconda distribution (Python + Spyder IDE plus many pre-installed
packages) from anaconda.com for use in these assignments.

HW 7 ask you to compare sorting methods and use Pylab to make charts/
graphs of their running time behavior

Making meaningful graphs is often not easy

« experiment to find good sizes for data

— test on large enough data to clearly understand differences/similarities (for some
sorts, need lists hundreds of thousands and/or millions long)

« Experiment on sorted, reverse sorted, nearly sorted, random data



Sorting ( https://www.youtube.com/watch?v=k4RRi_ntQc8 )

It’s mostly a “solved” problem — available as excellent built-in functions — so why study?
The variety of sorting algorithms demonstrate a variety of important computer science
algorithmic design and analysis techniques.

Sorting has been studied for a long time. Many algorithms: selection sort, insertion
sort, bubble sort, radix short, Shell short, quicksort, heapsort, counting sort, Timsort,
comb sort, bucket sort, bead sort, pancake sort, spaghetti sort ... (see, e.g., wikipedia:
sorting algorithm)

Why sort? Searching a sorted list is very fast, even for very large lists (log n is your
friend). So if you are going to do a lot of searching, sorting is often excellent prep.

Should you always sort? (Python makes it so easy ... )
« We can search an unsorted list in O(n), so answer depends on how fast we can sort.
« How fast can we sort? Certainly not faster than linear time (must look at, and maybe

move, each item). In fact, in general we cannot sort in O(n). Best “comparison-
based” sorting algorithms are O(n log n)

« So, when should you sort? If, for example, you have many searches to do. Suppose
we have n/2 searches to do.
— n/2 linear searches = n/2 * O(n) =2 O(n2)

— sort, followed by n/2 binary searches > O(nlogn)+n/2 * O(logn) > O(nlogn)+O(n log
n) 2> O(nlogn) for large n, this is much faster


https://www.youtube.com/watch?v=k4RRi_ntQc8

Today’s news - this year’s Turing Award winners
(“the Nobel Prize of computer science”)

https://www.nytimes.com/2021/03/31/technology/turing-award-aho-
ullman.html

Compilers

Alfred V.Aho &7 S5
Ravi Sethi ;
Jetfrey D. Ullman



https://www.nytimes.com/2021/03/31/technology/turing-award-aho-ullman.html
https://www.nytimes.com/2021/03/31/technology/turing-award-aho-ullman.html

Sorting

e Python built-in methods, functions

— myList.sort()

— sorted(mylist)

— sorted(mylist, key=lambda item: item[2])
e first, a simple sort

— how you would sort if given, say, a big list of numbers
written on a page? How would you write down the
sorted version of the list: 523-2151001 8 2?

523-215100182 —-»> -212581523100



ldea: repeatedly find min in unsorted part and move it

to sorted

523-215100182

Sorted

-2

-21

-212

-2125

-21258
-2125815
-212581523
-2125815 23100

Not yet sorted
523-215100182
523 15100182
5231510082
523151008
23151008
2315100
23100
100



Sorting — selection sort

Given:
L[O:i] sorted and in final position
L[i:] unsorted

How do we “grow” solution?

Find min in unsorted part and swap it with item
currently at position i



Sorting — selection sort

Sorted and in final position Unsorted

def selectionSort(L):
foriin range(len(L)):

# swap min item in unsorted region with ith
# item

Sorted and in final position Unsorted




Sorting — selection sort

def selectionSort(L):

i=0

# assume L[0:i] sorted and in final position

while i < len(L):
minindex = findMinlIndex(L, i)
L[i], L[minIndex] = L[minIndex], L]i]
# now L[0:i+1] sorted an in final position.
# Reestablish loop invariant before continuing.
i=i+1
# L[0:i] sorted and in final position



# return index of min item in L[startIndex:]
# assumes startindex < len(L)
#
def findMinIndex(L, startindex):
minindex = startIndex
currindex = minindex + 1
while currindex < len(L):
if L[currindex] < L[minIndex]:
minindex = currindex
currlndex = currindex + 1
return minindex



Sorting — selection sort

running time — Big O?

let n be len(L)

findMinIndex(L,startIndex) - number of basic
steps?

— n-startindex

selectionSort(L)

— calls findMinIndex(L,i) for i = 0..n-1

— so total steps = (n-0) + (n-1) + (n-2) + ... +1 ="

— 50, O(n2)



Sorting

e lec29sorts.py code has sorting functions plus

— timing functions timeSort, timeAllSorts

— mixup function that takes a list as input and
randomly rearranges items (note: contains
commented out code that demonstrates incorrect
random mixup algorithm as well)



Sorting

« Another simple approach —insertion sort.
Slightly different main step picture than for
selection sort

Given:
L[O:i] sorted (but not necessarily in final position)
L[i:] unsorted

How do we “grow” solution?

Move L[i] into correct spot (shifting larger ones in
L[O:i] one slot to the right



|dea: repeatedly move first item in unsorted part to
proper place in sorted part

523-215100182

Sorted Not yet sorted
523-215100182
5 23 -215100182
523 -215100182
-25 23 15100182
-2515 23 100182
-251523100 182
-2151523100 82
-21581523100 2

-2125815 23100



Insertion sort

e running time of insertion sort?

— best case?
« sorted already O(n)
— worst/average case?
« O(n2)



Running time of selection sort and
insertion sort

e Selection sort

O(n2) always — worst, best, average case. It always searches the entire
unsorted portion of the list to find the next min. No distinction
between best/worst/average cases.

e |nsertion sort

In best case, while loop never executes, so O(n)

In worst case, while loop moves ith item all the way to L[0]. This yields
the familiar sum, 0+ 1+ 2 + ... + n, once again. Thus, O(n2).

Average case is also O(n2)

Among O(n2) sorts, insertion sort is good one to remember. In
practice, it works well on “almost sorted” data, which is common. It is
sometimes used as a “finish the job” component of hybrid sorting
methods — use an O(n log n) sorting method until the list is “almost
sorted, then switch to insertion sort to finish.



def testSort(sortFunction, title= “, minN = 1000, maxN=20000,
step=2000):

listSizes = list(range(minN, maxN, step))
runTimes = []
for listSize in listSizes:
listToSort = mixup(list(range(listSize)))
startTime = time.time()
sortFunction(listToSort)
endTime = time.time()
runTimes.append(endTime-startTime)

pylab.figure(1)

pylab.clf()

pylab.xlabel('List size') lec29sorts.py
pylab.ylabel('Time (s)') lec29b.py

pylab.title(title)
pylab.plot(listSizes, runTimes, 'ro-')



fjojoj+«a/a




Next time

« more efficient sorting:
— merge sort
— Quicksort

« Many visualizations of sorting algorithms on the
web:
— http://www.sorting-algorithms.com, http://sorting.at,

https://www.cs.usfca.edu/~galles/visualization/
ComparisonSort.html

— https://www.youtube.com/watch?v=kPRAOW1kECg

— https://www.youtube.com/watch?v=R0alU379I3U
(dance group demonstrating sorting algorithms ...)



http://www.sorting-algorithms.com/
http://sorting.at/
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=ROalU379l3U

