
CS2110 Lecture 29   Mar. 31, 2021

• Important schedule change: quiz 4 changed to April 23 
• DS7 due today by  5pm 
• HW7 available, due next Wednesday night 

Today 
• Basic sorting algorithms: 

• Selection sort 
• Insertion sort 

• More efficient sorting algorithms



DS 7 and HW 7 
• Need to use Pylab module to plot charts/graphs. Modules/packages like 

Pylab can be annoying to install. I strongly recommend you download the 
free Anaconda distribution (Python + Spyder IDE plus many pre-installed 
packages) from anaconda.com for use in these assignments.   

HW 7 ask you to compare sorting methods and use Pylab to make charts/
graphs of their running time behavior 

Making meaningful graphs is often not easy 
• experiment to find good sizes for data 

– test on large enough data to clearly understand differences/similarities (for some 
sorts, need lists hundreds of thousands and/or millions long) 

• Experiment on sorted, reverse sorted, nearly sorted, random data



Sorting ( https://www.youtube.com/watch?v=k4RRi_ntQc8 )

It’s mostly a “solved” problem – available as excellent built-in functions – so why study? 
The variety of sorting algorithms demonstrate a variety of important computer science 
algorithmic design and analysis techniques. 
Sorting has been studied for a long time. Many algorithms: selection sort, insertion 
sort, bubble sort, radix short, Shell short, quicksort, heapsort, counting sort, Timsort, 
comb sort, bucket sort, bead sort, pancake sort, spaghetti sort … (see, e.g., wikipedia: 
sorting algorithm) 

Why sort? Searching a sorted list is very fast, even for very large lists (log n is your 
friend). So if you are going to do a lot of searching, sorting is often excellent prep. 

Should you always sort? (Python makes it so easy … ) 
• We can search an unsorted list in O(n), so answer depends on how fast we can sort.  
• How fast can we sort? Certainly not faster than linear time (must look at, and maybe 

move, each item). In fact, in general we cannot sort in O(n).  Best “comparison-
based” sorting algorithms are O(n log n) 

• So, when should you sort?  If, for example, you have many searches to do. Suppose 
we have n/2 searches to do.   
– n/2 linear searches ! n/2 * O(n) ! O(n2) 
– sort, followed by n/2 binary searches ! O(n log n) + n/2 * O(log n) ! O(n log n) + O(n log 

n) ! O(n log n)  for large n, this is much faster

https://www.youtube.com/watch?v=k4RRi_ntQc8


Today’s news - this year’s Turing Award winners 
(“the Nobel Prize of computer science”)

• https://www.nytimes.com/2021/03/31/technology/turing-award-aho-
ullman.html 

•

https://www.nytimes.com/2021/03/31/technology/turing-award-aho-ullman.html
https://www.nytimes.com/2021/03/31/technology/turing-award-aho-ullman.html


Sorting

• Python built-in methods, functions 
– myList.sort() 
– sorted(mylist) 
– sorted(mylist, key=lambda item: item[2]) 

• first, a simple sort 
– how you would sort if given, say, a big list of numbers 

written on a page? How would you write down the 
sorted version of the list: 5 23 -2 15 100 1 8 2? 

 5 23 -2 15 100 1 8 2 !  -2 1 2 5 8 15 23 100



Idea: repeatedly find min in unsorted part and move it 
to sorted 
    5 23 -2 15 100 1 8 2 
Sorted          Not yet sorted 
          5 23 -2 15 100 1 8 2 
-2          5 23  15 100 1 8 2 
-2 1         5 23 15 100 8 2 
-2 1 2         5 23 15 100 8 
-2 1 2 5        23 15 100 8 
-2 1 2 5 8          23 15 100 
-2 1 2 5 8 15      23 100 
-2 1 2 5 8 15 23     100 
-2 1 2 5 8 15 23 100   



Sorting – selection sort

Given: 
L[0:i] sorted and in final position 
L[i:] unsorted 

How do we “grow” solution?

Sorted and in final position Unsorted

i

Find min in unsorted part and swap it with item 
currently at position i



Sorting – selection sort

def selectionSort(L): 
 for i in range(len(L)): 
  # swap min item in unsorted region with ith   
# item 

Sorted and in final position Unsorted

i

Sorted and in final position Unsorted

i



Sorting – selection sort

def selectionSort(L): 
 i = 0 
 # assume L[0:i] sorted and in final position 
 while i < len(L): 
  minIndex = findMinIndex(L, i) 
  L[i], L[minIndex] = L[minIndex], L[i] 
  # now L[0:i+1] sorted an in final position.  
  # Reestablish loop invariant before continuing. 
  i = i + 1 
  # L[0:i] sorted and in final position

Sorted and in final position Unsorted

i



# return index of min item in L[startIndex:] 
# assumes startIndex < len(L) 
# 
def findMinIndex(L, startIndex): 
 minIndex = startIndex 
 currIndex = minIndex + 1 
 while currIndex < len(L): 
  if L[currIndex] < L[minIndex]: 
   minIndex = currIndex 
  currIndex = currIndex + 1 
 return minIndex



Sorting – selection sort

• running time – Big O? 
• let n be len(L)  
• findMinIndex(L,startIndex) - number of basic 

steps?  
– n-startIndex 

• selectionSort(L) 
– calls findMinIndex(L,i) for i = 0..n-1 
– so total steps = (n-0) + (n-1) + (n-2) + … + 1 = ? 
– so, O(n2)



Sorting 

• lec29sorts.py code has sorting functions plus 
– timing functions timeSort, timeAllSorts 
– mixup function that takes a list as input and 

randomly rearranges items (note: contains 
commented out code that demonstrates incorrect 
random mixup algorithm as well)



Sorting 
• Another simple approach – insertion sort. 

Slightly different main step picture than for 
selection sort

Sorted, not yet in final position Unsorted

i
Given: 

L[0:i] sorted (but not necessarily in final position) 
L[i:] unsorted 

How do we “grow” solution?

Move L[i] into correct spot (shifting larger ones in 
L[0:i] one slot to the right



Idea: repeatedly move first item in unsorted part to 
proper place in sorted part 
    5 23 -2 15 100 1 8 2 
Sorted          Not yet sorted 
          5 23 -2 15 100 1 8 2 
5          23  -2 15 100 1 8 2 
5 23         -2 15 100 1 8 2 
-2 5 23        15 100 1 8 2 
-2 5 15 23       100 1 8 2 
-2 5 15 23 100      1 8 2 
-2 1 5 15 23 100     8 2 
-2 1 5 8 15 23 100    2 
-2 1 2 5 8 15 23 100  



Insertion sort

• running time of insertion sort? 
– best case? 
• sorted already O(n) 

– worst/average case? 
• O(n2) 



Running time of selection sort and 
insertion sort

• Selection sort 
– O(n2) always – worst, best, average case.  It always searches the entire 

unsorted portion of the list to find the next min.  No distinction 
between best/worst/average cases. 

• Insertion sort 
– In best case, while loop never executes, so O(n) 
– In worst case, while loop moves ith item all the way to L[0].  This yields 

the familiar sum,  0 + 1 + 2 + … + n, once again. Thus, O(n2). 
– Average case is also O(n2) 
– Among O(n2) sorts, insertion sort is good one to remember.  In 

practice, it works well on “almost sorted” data, which is common.  It is 
sometimes used as a “finish the job” component of hybrid sorting 
methods – use an O(n log n) sorting method until the list is “almost 
sorted, then switch to insertion sort to finish. 



def testSort(sortFunction, title= ‘’, minN = 1000, maxN=20000,     
  step=2000): 
 listSizes = list(range(minN, maxN, step)) 
 runTimes = [] 
 for listSize in listSizes: 
  listToSort = mixup(list(range(listSize))) 
  startTime = time.time() 
  sortFunction(listToSort) 
  endTime = time.time() 
  runTimes.append(endTime-startTime) 
 pylab.figure(1) 
     pylab.clf() 
  pylab.xlabel('List size')                                              lec29sorts.py 
 pylab.ylabel('Time (s)')           lec29b.py 
 pylab.title(title) 
     pylab.plot(listSizes, runTimes, 'ro-')





• more efficient sorting: 
– merge sort 
– Quicksort 

• Many visualizations of sorting algorithms on the 
web: 
– http://www.sorting-algorithms.com, http://sorting.at, 

https://www.cs.usfca.edu/~galles/visualization/
ComparisonSort.html 

– https://www.youtube.com/watch?v=kPRA0W1kECg 
– https://www.youtube.com/watch?v=ROalU379l3U 

(dance group demonstrating sorting algorithms …)

Next time

http://www.sorting-algorithms.com/
http://sorting.at/
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=ROalU379l3U

