CS2110 Lecture 25 Mar. 22, 2021

HWG6 due Thursday
No discussion sections tomorrow

Last time:
— Finished object oriented programming (Ch 17, 18, 19)

Today: Some problems involving randomization and
simulation

Using randomization to mix up (shuffle) a list of
numbers

def mixup(L):
newl = L[:]
length = len(L)
foriin range(length):
newlndex = random.randint(0, length-1)
newlL[newlIndex], newl][i] = newlL][i], newL[newIndex]
return(newl)

e« What do you think?

o Test on a few lists. mixupTests.py
>>> mixup([1,2,3,4,5])
[1,3,4,5, 2]

e Run testMixup(100000). What do you expect as result?

e Hmm..

« See: http://blog.codinghorror.com/the-danger-of-naivete/ and https://www.datamation.com/entdev/
article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-
Security.htm

http://blog.codinghorror.com/the-danger-of-naivete/
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm

A little Monte Carlo simulation

Roughly speaking, Monte Carlo simulation is a fancy name for using repeated
random sampling of a problem space to determine results

lec25coins.py is a very simple Monte Carlo simulation of coin flipping.

o doNCoinFlips(numFlips): return number of heads and number of tails
resulting from specified number of flips

o doCoinFlipTrials(numTrials, numCoins): doing *one* set of flips is not usually
a good way to do an experiment. Better to do several “trials” flipping the
same number of coins. E.g flip 100 coins 10 times

Compute, print, and return statistical info:
— average head/tail ratio (averaged over the set of trials)
— std deviation of head/tail ratios

o doCoinFlipExperiment(minCoins, maxCoins, factor)

— collect doCoinFlipTrials data for different numbers of coins, so we can see trend of
statistics as number of flips grows:
e« minNum, minNum®*factor, minNum*factor*factor, ...

o plotResults
— use pylab to create graphs of stats gathered by doCoinFlipExperiment

https://en.wikipedia.org/wiki/Monte_Carlo_method

How can we use Monte Carlo simulation
to calculate the value of t?

2m

2m

Area?4 sqm Area? mtsqm

2m

N

How can we use Monte Carlo simulation
to calculate the value of t?

Square area: 4 sgm
Circle area: mmtsgm

Ratio of circle area to
square area? T/4

If we drop a million grains
of sand in the square, what
fraction of them will be in
the circle? T/4

How can we simulate
dropping that sand?

Monte Carlo simulation to calculate it

[m
\

v

Square area: 4 Circle area:
If drop 1000000 grains of sand in
square, fraction /4 should fall in
circle

How can we simulate dropping
that sand?

1. Generate 1000000 2d
coordinates (x,y) with xand y
both random between in
range [-1, 1]

2. Count fraction f that are in
circle!

Finally, calculate i as:
f*4

Monte Carlo simulation to calculate it

m

<€
2m <

-
N

\4

Square area: 4

Quadrant area: 1

Circle area: 1t

Quarter circle area: /4

Quarter circle/quadrant ratio: n/4,

the same as before

lec25pi.py (estimatePi function)
implements this simulation, with
one small modification. Drop the
grains of sand only in the upper
right quadrant.

1. Generate the 1000000 2d
coordinates (x,y) with xand y
in range [0, 1]

2. Count fraction f that are in
circle! How?
in circle if x*x + y*y <=1

Finally, calculate i as:

f*4

(Note: although a good example, this is
not an efficient way to calculate pi)

Read more at: _https://learntofish.wordpress.com/2010/10/13/calculating-pi-with-the-monte-carlo-method/
>>>r = findPi(10, 1000000000, 10)

Estimate: 3.3600000000000003, SD: 0.40792156108742283, num random pts: 10

Estimate: 3.16, SD: 0.07155417527999319, num random pts: 100

Estimate: 3.1512000000000002, SD: 0.03616849457746344, num random pts: 1000
Estimate: 3.1312, SD: 0.0158634170341702, num random pts: 10000

Estimate: 3.139152, SD: 0.005902536403953735, num random pts: 100000

Estimate: 3.1417592, SD: 0.0003406290651133859, num random pts: 1000000

Estimate: 3.1414109600000004, SD: 0.00019791773644632456, num random pts: 10000000
Estimate: 3.141578496, SD: 0.00013422946466409779, num random pts: 100000000
Estimate: 3.1415904263999996, SD: 5.747188499983057e-05, num random pts: 1000000000

Pi estimates Std dev. of pi estimates

335 - 0.40 -

0.35 -

o 3301 < (030 -
=2 S

b ' 10.25 -
8 325 Z
7 L=

2 o [0.20
s =

- 2 1015 1
% 320 2o

. “ (0,10 -

315 1 0.05 1

0.00 1

104 10 10° 10% 10 10¢ 10° 10°
Number of random points Number of random points

https://learntofish.wordpress.com/2010/10/13/calculating-pi-with-the-monte-carlo-method/

Monty Hall problem http://en.wikipedia.org/wiki/Monty Hall problem

Suppose you're on a game show, and you're given the choice of
three doors: Behind one door is a car; behind the others, goats.
You pick a door, say No. 1, and the host, who knows what's behind
the doors, opens another door, say No. 3, which has a goat. He
then says to you, "Do you want to pick door No. 27"

The problem: Is it to your advantage to switch your choice?

- Parade magazine, 1990, Marilyn vos Savant’s “Ask Marilyn
column”

http://en.wikipedia.org/wiki/Monty_Hall_problem

Monty Hall problem

— M. vos Savant (whose column generated huge public
awareness) quotes psychologist M. Piattelli-Palmarini: "...
no other statistical puzzle comes so close to fooling all
the people all the time.” Herbranson and Schroeder:
Pigeons repeatedly exposed to the problem show that
they rapidly learn always to do the right thing, unlike

humans. ©
— Demonstrate simulation using randomization to help

“see” that switching is the right thing to do.
montyhall.py

An problem to think about for fun

You want to sell your phone.

A large line of people assembles seeking to buy it.
Each has a random price offer (bid) in mind. You
want to maximize price BUT you must consider
the bids ONE AT A TIME, in the order received,
and REJECT OR ACCEPT EACH ONE IMMEDIATELY.

Is there are strategy that can make it likely you
get a good price?

E.g. “always take first bid” — chance of getting
best price is then 1/n. Not so good....

Wednesday

Introduce searching and sorting

Algorithm run-time analysis and computational
complexity

