
CS2110 Lecture 25 Mar. 22, 2021

• HW6 due Thursday
• No discussion sections tomorrow
• Last time:
– Finished object oriented programming (Ch 17, 18, 19)

• Today: Some problems involving randomization and
simulation

Using randomization to mix up (shuffle) a list of
numbers

def mixup(L):
 newL = L[:]
 length = len(L)
 for i in range(length):
 newIndex = random.randint(0, length-1)
 newL[newIndex], newL[i] = newL[i], newL[newIndex]
 return(newL)

• What do you think?
• Test on a few lists. mixupTests.py

>>> mixup([1,2,3,4,5])
[1, 3, 4, 5, 2]

• Run testMixup(100000). What do you expect as result?
• Hmm…
• See: http://blog.codinghorror.com/the-danger-of-naivete/ and https://www.datamation.com/entdev/

article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-
Security.htm

http://blog.codinghorror.com/the-danger-of-naivete/
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.datamation.com/entdev/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm

A little Monte Carlo simulation
Roughly speaking, Monte Carlo simulation is a fancy name for using repeated
random sampling of a problem space to determine results
lec25coins.py is a very simple Monte Carlo simulation of coin flipping.

• doNCoinFlips(numFlips): return number of heads and number of tails

resulting from specified number of flips
• doCoinFlipTrials(numTrials, numCoins): doing *one* set of flips is not usually

a good way to do an experiment. Better to do several “trials” flipping the
same number of coins. E.g flip 100 coins 10 times

 Compute, print, and return statistical info:
– average head/tail ratio (averaged over the set of trials)
– std deviation of head/tail ratios

• doCoinFlipExperiment(minCoins, maxCoins, factor)
– collect doCoinFlipTrials data for different numbers of coins, so we can see trend of

statistics as number of flips grows:
• minNum, minNum*factor, minNum*factor*factor, …

• plotResults
– use pylab to create graphs of stats gathered by doCoinFlipExperiment

https://en.wikipedia.org/wiki/Monte_Carlo_method

How can we use Monte Carlo simulation
to calculate the value of π?

2m

2m 1m

Area? Area? 4 sq m π sq m

How can we use Monte Carlo simulation
to calculate the value of π?

2m

2m 1m

Square area: 4 sq m
Circle area: π sq m

Ratio of circle area to
square area?

If we drop a million grains
of sand in the square, what
fraction of them will be in
the circle?

How can we simulate
dropping that sand?

π/4

π/4

Monte Carlo simulation to calculate π

2m

2m 1m

How can we simulate dropping
that sand?

1. Generate 1000000 2d
coordinates (x,y) with x and y
both random between in
range [-1, 1]

2. Count fraction f that are in
circle!

Finally, calculate π as:
f * 4

Square area: 4 Circle area: π
If drop 1000000 grains of sand in
square, fraction π/4 should fall in
circle

Monte Carlo simulation to calculate π

2m

2m 1m

lec25pi.py (estimatePi function)
implements this simulation, with
one small modification. Drop the
grains of sand only in the upper
right quadrant.

1. Generate the 1000000 2d
coordinates (x,y) with x and y
in range [0, 1]

2. Count fraction f that are in
circle! How?
in circle if x*x + y*y <= 1

Finally, calculate π as:
f * 4
(Note: although a good example, this is
not an efficient way to calculate pi)

Square area: 4 Circle area: π
Quadrant area: 1
Quarter circle area: π/4
Quarter circle/quadrant ratio: π/4,
the same as before

Read more at: https://learntofish.wordpress.com/2010/10/13/calculating-pi-with-the-monte-carlo-method/
>>> r = findPi(10, 1000000000, 10)
Estimate: 3.3600000000000003, SD: 0.40792156108742283, num random pts: 10
Estimate: 3.16, SD: 0.07155417527999319, num random pts: 100
Estimate: 3.1512000000000002, SD: 0.03616849457746344, num random pts: 1000
Estimate: 3.1312, SD: 0.0158634170341702, num random pts: 10000
Estimate: 3.139152, SD: 0.005902536403953735, num random pts: 100000
Estimate: 3.1417592, SD: 0.0003406290651133859, num random pts: 1000000
Estimate: 3.1414109600000004, SD: 0.00019791773644632456, num random pts: 10000000
Estimate: 3.141578496, SD: 0.00013422946466409779, num random pts: 100000000
Estimate: 3.1415904263999996, SD: 5.747188499983057e-05, num random pts: 1000000000

https://learntofish.wordpress.com/2010/10/13/calculating-pi-with-the-monte-carlo-method/

Monty Hall problem http://en.wikipedia.org/wiki/Monty_Hall_problem

Suppose you're on a game show, and you're given the choice of
three doors: Behind one door is a car; behind the others, goats.
You pick a door, say No. 1, and the host, who knows what's behind
the doors, opens another door, say No. 3, which has a goat. He
then says to you, "Do you want to pick door No. 2?"
The problem: Is it to your advantage to switch your choice?
 - Parade magazine, 1990, Marilyn vos Savant’s “Ask Marilyn
column”

http://en.wikipedia.org/wiki/Monty_Hall_problem

Monty Hall problem

– M. vos Savant (whose column generated huge public
awareness) quotes psychologist M. Piattelli-Palmarini: "...
no other statistical puzzle comes so close to fooling all
the people all the time.” Herbranson and Schroeder:
Pigeons repeatedly exposed to the problem show that
they rapidly learn always to do the right thing, unlike
humans. ☺

– Demonstrate simulation using randomization to help
“see” that switching is the right thing to do.
montyhall.py

An problem to think about for fun
You want to sell your phone.
A large line of people assembles seeking to buy it.
Each has a random price offer (bid) in mind. You
want to maximize price BUT you must consider
the bids ONE AT A TIME, in the order received,
and REJECT OR ACCEPT EACH ONE IMMEDIATELY.
Is there are strategy that can make it likely you
get a good price?
E.g. “always take first bid” – chance of getting
best price is then 1/n. Not so good….

Wednesday
Introduce searching and sorting
Algorithm run-time analysis and computational
complexity

