
• DS 6 due today
• HW 6 due Thursday, 3/25

Last time
• Continued classes and object oriented programming (Ch 17, 18,

19)
• Demonstrate “object-oriented” style of class use - with

__init__ and other methods defining the interface to use of a
class

Today
• class attributes (not in interactive text but in 18.2 of pdf version of text)
• Ch 19: inheritance

CS2110 Lecture 24 Mar. 19, 2021

HW 6 hints
– Q1: think carefully about overlaps – draw pictures

• Think dimension by dimension – three 1D problems
– if they don’t overlap in x, they don’t overlap

» Express this in terms of center x’s and half-widths
– if ..
– if ..

• ________________ ----------------

– Q2
• Ensure legal moves – i.e. if user enters an illegal choice, print

something appropriate and ask for a new choice.
• Computer gameplay can be random (but must be legal). You can

use, for instance, random.randint(…)and random.choice(…) to
choose (non-zero) number of balls and (non-empty) heap. (also
fine, of course, if you make yours smarter than random)

– Q3 is very very easy compared to Q1 and Q2

Last time: time1.py, time2.py, time2Alt.py
• Look at implementation of
– incrementTime(self)
– laterTime(self)
methods in time2.py. Same basic code as in time1.py but now in
OO style. First argument to a method is always object that invokes
the method, and standard practice is to use var name ‘self’

• Nice feature of classes: you can overload operators. That
is, you can define how +, -, <, etc. apply to objects of
classes that you define
– __add__ for + (and __radd__)
– __lt__ for <
– __eq__ for ==, etc.
See how these are used in time2.py

Start with two simple classes, Cat and Dog: catdog.py
Each class has:
• a simple constructor (with optional name as argument, and default if nothing

provided)
• a __repr__ so objects will display readably
• a few methods: speak, setName, getName,fetch (only Dog)

>>> c1 = Cat()
>>> c2 = Cat()
>>> d = Dog(“spot”)
>>> for animal in [c, c2, d]:
 print(animal.getName())
 animal.speak()

fluffy
meow
fluffy testCatDog()
meow
spot
woof

Class attributes
 (not in interactive text but in 18.2 of pdf version of text)

Consider the basic Cat and Dog classes in catdog.py

Each cat and dog has a name but names aren’t very unique. We can’t
distinguish previous example’s c1 and c2 (both “fluffy”) using just their
simple name prop

How we give each cat a unique ID number? Class attributes make this
easy.

class Cat ():
 scientificName = ‘felis catus’
 numCats = 0

scientificName and numCats are attributes “owned” by the class, and
shared by all instances

Class attributes
To uniquely identify cats,
• use a class attribute, numCats, initially 0
• each time a Cat object is created (in __init__)

– assign value of numCats to new Cat as id
– increment numCats class attribute

• Also, update __repr__ to show id in printed
representation

>>> c1 = Cat()
>>> c2 = Cat()
>>> c2
<Cat named fluffy. id: 2>
>>> c1
<Cat named fluffy. id: 1>

catdogV2.py

>>> class Cat():
 numCats = 0
 def __init__(…):
 …
 def speak(…):
 …
 …
>>> cat1 = Cat(‘milo’)
>>> cat2 = Cat(‘reece’)

cat1
name ‘milo’
id 1

cat2
name ’reece’
id 2

Numcats
<function __init__ …>
<function Cat.speak …>
<function Cat.getName ..>

Cat 012

Be careful when assigning to class
attributes

class Cat ():
 scientificName = ‘felis catus’

>>> Cat.scientificName
‘felis catus’
>>> cat1 = Cat()
>>> cat1.scientificName
‘felis catus’
>>> cat1.scientficName = ‘kitty’
>>> Cat.scientificName
‘felis catus’
>>> cat1.scientficName
‘kitty’

When you reference an attribute from an instance, Python first checks if the instance contains the
attribute. If not, it checks if the class has it. So, the first cat1.scientificName above yields ‘felis catus’.
BUT, when you assign to an attribute from an instance, Python uses the namespace of the object. So
cat1.scientificName does not modify the class attribute. Instead, it creates a new attribute (of the
same name) in the instance.
GENERAL RULE: refer to class attributes using class name – Cat.scientificName – rather than instance

cat1
sci..Name ‘kitty’

sci..Name ‘felis catus’Cat

Ch 19 - Inheritance
When creating classes like Cat and Dog, some properties
and methods might naturally be the same in both.

Inheritance, in object-oriented programming languages, is
the ability to define a new class that is a modified version
of an existing class.
 class SubClass (SuperClass):
 …
The new class SubClass inherits all methods (and
properties) of SuperClass but can also:
• can add new methods (ones not defined in SuperClass)
• redefine (override) methods inherited from SuperClass

It’s also common to say
“derived class” and “base class”

Ch 19 - Inheritance
>>> class Foo ():
 def doSomething(self):
 print(‘hi’)
>>> class Bar(Foo):
 def doSomething2(self):
 print(‘bye’)
>>> b = Bar()
>>> b.doSomething()
hi
>>> b.doSomething2()
Bye
>>> f = Foo()
>>> f.doSomething()
hi
>>> f.doSomething2()
Error

Inheritance
>>> class Foo ():
 def doSomething(self):
 print(‘hi’)

def doSomethingElse(self):
 print(‘something else’)

>>> class Bar(Foo):
 def doSomething(self):
 print(‘hello’)

 def doSomething2(self):
 print(‘bye’)
>>> b = Bar()
>>> b.doSomething()
hello
>>> f = Foo()
>>> f.doSomething()
hi

Inheritance
>>> class Foo ():
 def __init__(self):
 self.x = 0

>>> class Bar(Foo):
 def __init__(self):
 self.y = 0

>>> b = Bar()
>>> b.y
0
>>> b.x
Error

Can we inherit the properties of the superclass Foo? Yes, by calling superclass’
__init__. Not required BUT highly recommended/best practice is for __init__ of
subclass to always first call __init__ of superclass.

Inheritance
>>> class Foo ():
 def __init__(self):
 self.x = 0

>>> class Bar(Foo):
 def __init__(self):
 Foo.__init__(self)
 self.y = 0

>>> b = Bar()
>>> b.y
0
>>> b.x
0

Highly recommended/best practice is for __init__ of subclass to always first call
__init__ of superclass.

Inheritance demo
Use inheritance and define Dog and Cat as subclasses of new Animal class.
• Demo animals.py, testAnimal()
• Note that the Animal class manages the IDs of all animals
• Animal’s getNumLegs(), getName(), setName() methods are inherited

and used by all subclasses
• Subclasses Dog and Cat have their own speak methods, which override

Animal’s default speak method
• Cat has a getFurColor method. Dog does not
• Dog has a fetch() method. Cat does not

Next time: randomization

