
CS2110 Lecture 21    Mar. 12, 2021
• HW5 due Mon. 3/15  
– Q3 and Q4: it is fine to use  loops as long as the function is 

also recursive. 

Last time 
• Grades so far 
• More recursion examples 

Today 
• A couple more recursion examples 
• A short introduction to exceptions 
 





(last time) Important rules for recursive functions

• When writing a recursive function: 
– MUST have base case(s), situations when code does not 

make recursive call. 

– MUST ensure that recursive calls make progress toward 
base cases.  I.e. you need to convince yourself that 
recursive call is “closer to” base case than the original 
problem you are working on 

– SHOULD ensure you don’t unnecessarily repeat work.  
Ignoring this contributes to recursion’s bad reputation. 
E.g. direct recursive implementation of Fibonacci is 
extremely and unnecessarily inefficient



• More basic recursion examples (lec19.py) 
– Print the items of a list, one per line 
– Print the items of a list, one per line, in reverse order 

• Idea?  
• Consider list as: theFirstItem <the rest of the list> 
• Reverse is: reverse(<the rest of the list>) theFirstItem 
• Consider list as: <list from start to near end> theLastItem  
• Reverse is: theLastItem reverse(<list from start to near end>) 

– return a string that is the reverse of the given string 
– sum the items in a list 
– return True/False depending on whether given string is a palindrome ( e.g. Was it a car 

or a cat I saw?) 
– return num of digits in an integer 
– return sum of digits in an integer 
– return string with each occurrence of a particular character with a different character 
– return count of number of substrings that have same first and last characters 
– compute nth Fibonacci number: 

• 1, 1, 2, 3, 5, 8, 13, … 
• Definition: fib(1) = 1, fib(2) = 1,  
•                     fib(n) = fib(n-1) + fib(n-2) for n > 2

(last time) Recursion examples 



More recursion examples

• generate a string pattern  
• “flatten” a list  

– E.g. [[[[[3,[2,4]]], 0], [‘a’]], 23] -> [3,2,4,0,’a’, 23] 

• Towers of Hanoi problem 
• nesting depth 
• Drawing shapes 

• https://en.wikipedia.org/wiki/Koch_snowflake

lec20.py 
ToHcomplete.py

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Koch_snowflake


Nesting depth
• Def of nestingDepth of a list 

– 0 if list has no lists as elements 
– 1 more than maximum nestingDepth among all items of the list that are lists 

• Examples 
– [] -> 0 
– [[]] -> 1 
– [[[]]] -> 2 
– [[[]], 1, 2] -> 2, because [[]] is 1 so the whole list is 1 + 1 = 2 
– [ [[]], 1, 2, [[[100]]] ] -> 3, because [[]] is 1, [[[100]]] is 2, max is 2, so whole list is 2 + 1 = 3 

def nestingDepth(inList): 
 # initialize a variable for max nesting level seen (among sublists) 
 # iterate over items in inList 
 #  if item is not a list, just skip it 
 # if item is a list, recursively compute its nesting level and 
 #        compare that item’s nesting level with max seen so far, 
 #        updating max if nec 
 # if max has not been updated in the loop, return 0 
 # otherwise return 1 more than max



Handling errors, raising errors, 
monitoring presumptions

• try/except 
• raise 
• assert – good practice to ”sprinkle” asserts throughout your 

code. Catch cases of presumed conditions not being met 
before they result in mysterious, hard-to-track down errors 

Try/except and raise covered well in basic Python 
documentation 

Textbook Ch 13 covers exceptions.  I won’t test you on this 
material but it is very useful. 

exceptions.py



Next Week 

• Next big topic: Classes and object-oriented 
programming (Chapters 17, 18, and 19) 


