
CS2110 Lecture 19 March 8, 2021
• No office hours at my regular time, 1-2, tomorrow. If you

want to meet at a different time, please send email
• No DS assignment or required attendance this week. TA will

be available if you have Quiz 2 questions or HW5 questions
• Quiz 2 has been graded

 median: 13/14
 high: 20 (4 people)

• HW 5 will be published this afternoon. Due next Monday

Today
• Start important topic of Recursion (Ch 16)

Score 1-4 5-8 9-12 13-16 16-20

of people 2 4 2 3 7

Programming games that I think can be helpful

• Human Resource Machine
– new, sequel: 7 Billion Humans

• Cargobot
• Shenzhen I/O (but recommend starting with the

ones above)

Additional exercises / resources
• codingbat.com – small should-be-easy auto-

graded exercises. DO THEM ALL
• pythontutor.com – visualize/trace code

execution
• hackerrank.com?

Recursion – Ch 16
• Very important and useful concept
• Not just for programming, but math and even

everyday life, legal definitions, etc.
• Has undeserved reputation among some

people: “recursion is bad – recursive programs
are inefficient” Yes, one can write very bad
recursive programs but this is true of non-
recursive programs as well. And recursion can
be super useful.

Recursion
• Recursive function: function whose definition contains references to/calls to itself

• For example, math’s factorial (3! = 3 * 2 * 1)
– You might be familiar with informal definition like: n! = n * (n-1) * … * 2 * 1
– But more precise mathematical definition is:
 factorial(1) = 1
 factorial(n) = n * factorial (n-1), for all n > 1

• Programming-wise, can very directly translate recursive mathematical definitions into code:

def factorial(n):
 if (n == 1):
 return 1
 else:
 return n * factorial (n – 1)

• DON’T let the function call, factorial(n-1), scare you. It’s just a function call. If you draw stack
frames like we did in earlier lectures, it all works out fine.

• DO need to think carefully when writing/analyzing recursive programs though …

Important rules for recursive functions
• When writing a recursive function:
– MUST have base case(s), situations when code does not

make recursive call.

– MUST ensure that recursive calls make progress toward
base cases. I.e. you need to convince yourself that
recursive call is “closer to” base case than the original
problem you are working on

– SHOULD ensure you don’t unnecessarily repeat work.
Ignoring this contributes to recursion’s bad reputation.
E.g. direct recursive implementation of Fibonacci is
extremely and unnecessarily inefficient

Ch16: Recursion and stack frames

 def factorial(n):
 if n == 1:
 result = 1
 else:
 recResult = factorial(n-1)

result = n * recResult
 return result

>>> n = 100
>>> y = 3
>>> answer = factorial(y)

factorial n 3
recResult
result

factorial n 2
recResult
result

factorial: n 1
recResult
result

main:

y 3

n 100

1

1
2

2
6

answer 6

More basic recursion examples (lec19.py)
• Print the items of a list, one per line
• Print the items of a list, one per line, in reverse order

• Idea?
• Consider list as: theFirstItem <the rest of the list>
• Reverse is: reverse(<the rest of the list>) theFirstIte
• Consider list as: <list from start to near end> theLastItem
• Reverse is: theLastItem reverse(<list from start to near end>)

• return a string that is the reverse of the given string
• sum the items in a list
• return True/False depending on whether given string is a palindrome (e.g. Was it a car or a

cat I saw?)
• return num of digits in an integer
• return sum of digits in an integer
• return string with each occurrence of a particular character replaced with a new character
• return count of number of substrings that have same first and last characters
• compute nth Fibonacci number:

• 1, 1, 2, 3, 5, 8, 13, …
• Definition: fib(1) = 1, fib(2) = 1,

 fib(n) = fib(n-1) + fib(n-2) for n > 2

Recursion

Ch16: Recursion and stack frames
Fibonacci numbers: 1,1, 2, 3, 5, 8, 13, …
variables fnm1, fnm2, result are used just so that it’s a little easier to follow
what’s going on when stepping through execution/viewing stack frames

def fib(n):
 if (n == 0) or (n == 1):
 result = 1
 else:
 fnm1 = fib(n-1)
 fnm2 = fib(n-2)
 result = fnm1 + fnm2
 return result

>>> fib(4)
3

Copy/paste code above and execute step-by-step on
Pythontutor.com to watch variables and stack diagrams

HW5
• First two are “basic” recursion problems.
• Q3 and Q4 are harder. Okay to use a loop in those

as long as you also use recursion
Next time
• More on recursion

