
CS2110 Lecture 14 Feb. 24, 2021
• HW 4 due Mar. 4
Last time
• Mutability of lists when passed as arguments to

function
• Functions with side effects
• Start Ch 12, dictionaries
Today

• More on dictionaries, Ch 12

(last time) Chapter 12: Dictionaries

• Dictionaries are:
– collections of key – value pairs

• Similar to but importantly different from lists
– think of lists as ordered collection of key-value pairs, where the

keys are integers 0, 1, 2, …
– with dictionaries, the collection is unordered but the cool thing

is that the keys can be any immutable values
– E.g. create dictionary numlegs
 >>> numlegs = { ‘frog’: 4, ‘human’: 2, ‘ant’:6, ‘dog’:4}

• one important feature of dictionaries is that they provide
very fast access to values associated with keys despite
being more flexible than lists
• demo dicttest.py

(last time) Dictionaries
• create: { k1:v1, k2:v2, …}
• empty dictionary: {}
• retrieve value: dict[key]
• modify (or insert) value for key: dict[key]=value
• len(d)
• d.keys()
• d.values()
• k in d
• del d[k]
• for key in dict:
• d.get(key, defaultVal) when you don’t want possible

KeyError for d[key]

Looping over dictionaries with for

If we have a dictionary, d, of names as keys and ages as
values, we can compute averages as follows:

averageAge = 0
sumOfAges = 0
for nameKey in d:

sumOfAges += d[nameKey]
if sumOfAges != 0:

averageAge = sumOfAges / len(d)
print(“The average age is: “, averageAge)

A dictionary example
• Text file with info about people – name, birth year,

favorite color, weight, home city, home country
• Read and store in dictionary
– Name as key
– Subdictionary (and sub-sub-dictionary) for other properties

{‘birthyear’: 1980,
 ‘favcolor’: ‘red’,
 …,
 ‘home’: {‘city’: ‘Tokyo’, ‘country’: ‘Japan’}
}

• Add simple password handling, storing “hash” in dict
 Files: ppldata.py, people.text

Related news

• 2015 Turing Award winners: https://www.theguardian.com/science/2016/
mar/01/turing-award-whitfield-diffie-martin-hellman-online-commerce

• http://amturing.acm.org/byyear.cfm
• Remember printFirstNPrimes problem? Finding prime factors of big numbers

is super Important for crytography. Internet security depends hugely on the
fact that there is no known way to find factors of very large numbers quickly

https://www.theguardian.com/science/2016/mar/01/turing-award-whitfield-diffie-martin-hellman-online-commerce
https://www.theguardian.com/science/2016/mar/01/turing-award-whitfield-diffie-martin-hellman-online-commerce
https://www.theguardian.com/science/2016/mar/01/turing-award-whitfield-diffie-martin-hellman-online-commerce
http://amturing.acm.org/byyear.cfm
https://en.wikipedia.org/wiki/Integer_factorization

A few little exercises

• Given a list of numbers, find the pair with greatest
difference

• Given a list of numbers find the pair with smallest
difference

• Given a list of numbers and a target number (call it k),
find two numbers (if they exist) in the list that sum to k

Lec14exercises.py has solutions for first two. Has slow
(and not completely correct) solution for third one. Can
you think of a much faster solution using dictionaries?

Small variants of/questions about third
problem

4. Suppose:
– No dictionaries allowed/available
– Numbers in lists are know to have limited magnitude. E.g. all

numbers between 0 and 10000
Fast solution?

5. Modify findKPairFast to provide indices/location of found
pair in list

6. Question: if we generate a list of, say, 10,000 random
numbers between -1,000,000 and 1,000,000 how likely is
it that the list contains a pair that sums to k for any k in,
say, 0…999?

 lec14exercisesB.py
 (next time)

Next Time

• DS5 and HW4
• Global variables, tuples (10.26-28), variable length and

keyword function parameters
• A bit on list comprehensions (10.22), conditional

expresssions, etc.

