
CS2110 Lecture 13 Feb. 22, 2021

• HW3 due tonight
• DS4 due tomorrow night

• HW4 will be available this afternoon, due next Thursday, Mar. 4.
Last time
• Continued Ch 10: for -> while conversion, more list mutability

examples and diagrams, list + vs append, == vs. is, list copies
Today
• Info about course grades
• Related to DS4: largest anagram set
• Mutability of lists when passed as arguments to function
• Functions with side effects
• Start Ch 12, dictionaries

About course grades
People ask if course is “curved”. Answer: no and yes
1. The “no” part: if everyone does excellent work and demonstrates mastery of all

the material, then I am happy to give everyone an A.
2. There are no pre-set point/percentage -> course grade mappings like many of

your are familiar with from high school (e.g. A for 90-100, B for 80-90, etc.).
Instead, based on my sense of how well students mastered the material, I map
score ranges to grades. Exam averages are often relatively low in a class like this -
60-75%. People who get A’s in the class generally do well on all the homework
80-100%, and 80% or more on exams. (Likely approximate ranges: A 85+, B 70+,
C 50-something+, D 40-something+)

3. The “yes” part: the College of Liberal Arts has some guidelines about grade
distribution (15% A, 34% B, 40%C, etc.). This is not a rule. Item 1 above takes
precedence! I can give all A’s (or F’s). You are not competing with other students.
Your job is to master the material. However, it is often the case that the grade
distribution “curve” fits the CLAS percentages approximately well. That’s simply
because 10-20% of the people do very well, 30-40% do well, etc. Many people
who get Cs/Ds skip homeworks, don’t put a lot of effort into them, etc.

After the second quiz, will provide specific numbers/info on where people stand so far

Discussion section 4 example
What if we wanted to find the largest set of anagrams?
• Simple direct approach:

biggestAnagramList = []
for word in wordList:
 anagramList = findAnagramsOf(word, wordList)
 if len(anagramList) > len(biggestAnagramList):
 biggestAnagramList = anagramList

Works okay for a couple thousand words (word5.txt) but too slow
for large word sets like wordsMany.txt
• Much faster approach: we’ll look at this in detail in a couple weeks

when we discuss algorithm analysis but, for now, the idea:
1. associate a “key” with each word, the sorted version of that word. E.g. [“art”,

“art”] … [“least”, “aelst”] … [“rat”, “art”] … [“stale”, “aelst”] … [“tar”, “art”]
2. Sort this list of pairs by those “keys”. Now all anagrams are neighbors in this

sorted list and the largest set can be found via one simple scan through it. [….
[“least”, “aelst”], [“stale”, “aelst”], ..., [“art”, “art”], [“rat”, “art”], [“tar”,
“art”] ...]

(last time) Objects, equality, and identity
There is an operator in Python called is
>>> x is y
True if x and y refer to same object (in computer memory), False
otherwise.
 You don’t often need to use is but you should be aware of when
two variables refers to the same mutable object. This is called
aliasing.

As we’ve seen:
>>> x = [1,2,3]
>>> y = x
>>> x is y
True
>>> x[1] = 100 y and x are aliases for the same list
>>> y[1] object
?

(last time) Objects, equality, and identity
>>> x = [1, 2, 3] constructs a list containing 1, 2, 3
>>> y = [1, 2, 3] constructs a (new/different) list
>>> x is y x, y are not aliases
False they are bound to different objects
>>> x == y they are still consider equal, though,
True which is what you usually care about
>>> y[0] = 100
>>> x
???

1

x

y
 , ,

 , ,

2 3

100

(last time) Objects, equality, and identity
Often, we want to avoid aliasing. So, given a list, can we easily make a copy? YES!

>>> x = [1, 2, 3]
>>> y = x
>>> z = x[:] range[:] is “full range” so a new list
 with all the elements of the original
>>> x is y
True
>>> x is z
False
>>> x == y
True
>>> x == z
True
>>> z[0] = 100
>>> y[0] = 50
>>> x
?
>>> y
?

(last time) Objects, equality, and identity
>>> x = [1, 2, 3]
>>> y = x
>>> z = x[:]

>>> z[0] = 100
>>> x
???

1

x

z
 , ,

 , ,

2 3

100

y

Objects, equality, and identity
>>> x = [1, 2, [30, 40]]
>>> y = x
>>> z = x[:]

>>> z[0] = 100
>>> z[2][1] = 50
>>> x
???
>>> y
???
>>> Z[2] = 6
>>> z
???
>>>x
???

1

x

z
 , ,

 , ,

2 ,

100

y

30
40

50

[:] is a shallow copy. There are ways to do deep copy
(maybe we will discuss later in the semester)

6

Mutability and arguments to functions

>>> def foo(inList, c)
… inList[2] = 100
… c = 10
>>>
>>> b = 2
>>> myList = [3, 5, b, 6]
>>> foo(myList, b)
>>> myList
[3, 5, 100, 6]

3 5 62

 , , , myList

b

But what if body of foo is instead: inList = inList + [10]?

inList 100

c

10

Mutability and arguments to functions

>>> def foo2(inList)
… inList = inList + [100]
>>>
>>> b = 2
>>> myList = [3, 5, b, 6]
>>> foo2(myList)
>>> myList
[3, 5, 2, 6]
>>> b

3 5 62

 , , , myList

b

inList

 , , , ,

100

Advice/comments on functions
• Some functions compute something and return a

value without side effects. That is, they do any
output and don’t change the values of any objects
that exist outside of the execution of that function.

• Other functions do have side effects. They either
print something (or affect GUI elements) or change
values of objects that exist outside the function
execution. Such functions often don’t return
anything. And such functions can maybe helpfully
be thought of as commands.

return new list that is like inList
but without 1st and last elements
def middle(inList):
 return inList[1:len(inList)-1]

We use these differently.
Consider:

def bar(inList):
 …
 middle(inList)
 …
 …
What can you say about this?

And

def baz(inList):
 …
 chop(inList)
 …
 ..

And how about this?

remove the first and last
elements from inList
def chop(inList)
 del inList[0]
 del inList[len(inList)-1]

Look at the code in lec13.py and make sure you understand the
differences between bar, bar2, and baz

Thoughts on this function?
Given a list of 1 or more numbers or strings, return the smallest
and largest items.

def getSmallestAndBiggest(listOfStuff):
 listOfStuff.sort()
 return (listOfStuff[0], listOfStuff[-1])

Functions should not modify their input unless the function
specification explicitly says to do so!

Given a list of 1 or more numbers or
strings, return the smallest and largest
items.

def getSmallestAndBiggest(listOfStuff):
 sortedCopyOfList = sorted(listOfStuff)
 return (sortedCopyOfList[0], sortedCopyOfList[-1])

Given a list of 1 or more numbers or
strings, sort the list and return the smallest and
largest items.

def sortAndGetSmallestAndBiggest(listOfStuff):
 listOfStuff.sort()
 return (listOfStuff[0], listOfStuff[-1])

Chapter 12: Dictionaries

• Python supports the extremely useful dictionary
‘dict’ type in Python

• Dictionaries are:
– collections of key – value pairs

• Similar to but importantly different from lists
– could think of lists as ordered collection of key-value

pairs, where the keys are integers 0, 1, 2, …
– with dictionaries, the collection is unordered but the

interesting thing is that the keys can be any immutable
values

– E.g. create dictionary numlegs
 >>> numlegs = { ‘frog’: 4, ‘human’: 2, ‘ant’:6, ‘dog’:4}

Dictionaries

• create with { k1:v1, k2:v2, …}
• empty dictionary: {}
• retrieve value: dict[key]
• modify (or insert) value for key: dict[key]=value

• one important feature of dictionaries is that they provide
very fast access (we might discuss how later in term) to
values associated with keys despite being more flexible
(not restricted to integer keys, etc.) than lists (demo:
dicttest.py for speed comparison with lists)

Dictionary operations
• len(d)
• d.keys()
• d.values()
• k in d
• del d[k]
• for key in dict:
• d.get(key, defaultVal) when you don’t want

possible KeyError for d[key]

But note: no slice – d[key1:key2] doesn’t make sense

Next Time
More on dictionaries, Ch 12

