
CS2110 Lecture 12 Feb. 19, 2021
• HW3 due Monday
• DS4 assignment document will be made available tonight

(but finish HW3 first! It’s more important and harder.)
Last time
• Iteration over lists
• list mutability
Today
• For-while conversion
• More on list mutability and aliasing
• + vs append
• is operator and object identify (vs ==)
• Review of HW3, Q1 hints, and introduction to DS4

for -> while conversion

 for var in sequence:
 …
 …
 …

 index = 0
 while index < len(sequence):
 var = sequence[index]
 …
 …
 …
 index = index + 1

Completely mechanical. No thought needed.
Body (the … lines) does not change.

lec12forwhile.py

(last time) Ch 10: lists are mutable!
• Strings are immutable. You can’t change them.
>>> myString = ‘hello’
>>> myString[0] = ‘j’ ! Error

• But lists are mutable! You can update lists
>>> myList = [1, 2, ‘hello’, 9]

>>> myList[1] = 53 you can replace a item in a list with a
 >>> myList new value
[1, 53, ‘hello’, 9]

>>> myList.append(‘goodbye’) you can add new items to the end
>>> myList of a list
[1, 53, ‘hello’, 9, ‘goodbye’]
>>> myList = myList.append(3)

>>> myList2 = [3, 99, 1, 4] you can even sort! Note: Python’s sort rearranges
>>> myList2.sort() the items directly within the given list. It doesn’t
>>> myList2 yield a new list with same items in sorted order
[1, 3, 4, 99] (different function, sorted, yields new sorted list)

List mutability
>>> a = 3
>>> myList = [a, a, 5]
>>> myList[0] = 4
>>> a = 100

>>>myList
???

a

myList

3

 , ,
5

100

myList[0] = 4 does not affect a’s value!
a = 100 does not affect list!

4

What happens here? Can you draw the updates?
>>> a = 3
>>> myList = [a, a, 5]
>>> myList2 = myList
>>> myList[0] = 4
>>>myList
???
[4, 3, 5]
>>>myList2
???
[4, 3, 5]
>>> myList = []
>>> myList
[]
>>> myList2
???
[4, 3, 5]

a

myList

3

 , ,
5

myList[0] = 4
 - does not affect a’s value!
 - does affect myList2’s value

4myList2

VERY IMPORTANT! CAN
BE CONFUSING!

[]

This is called aliasing – two or more variables referring to same mutable object

list +

>>> myList = [3, 5]
>>> myList2 = [2, 6]
>>> myList3 = myList +
myList2
>>> myList3
[3, 5, 2, 6]
>>> myList2[0] = 1
>>> myList3[0] = 7
>>> myList
?
>>> myList2
?
>>> myList3
?

myList
3

 ,

5 6

myList2

 ,

2

 , , , myList3

1

7

IMPORTANT: + on lists yields a NEW list

 append and sort

>>> a = 3
>>> myList = [5, 2, 1]
>>> myList2 = myList
>>> myList.append(a)
>>> myList2.sort()
>>>myList
?
>>>myList2
???

a

myList

3

 , ,

2

5myList2

 ,

1

SUPER IMPORTANT: unlike +, which does NOT modify the lists
involved, append and sort MODIFY the list.

list + vs. append

result = []
for num in range(100000):
 result = result + [num*num]

result = []
for num in range(100000):
 result.append(num*num)

Is either one better?

lec12append.py

Consequences of list mutability

>>> myList = [3, 5]
>>> myList2 = [2, myList]
>>> myList[0] = 1
>>> myList2
?

myList

3

 ,

5

myList2
 ,

2

1

Important when we pass lists as
arguments to functions! (next lecture)

del

del can be used to remove
item or items from a list

>>> b = 2
>>> myList = [3, 5, b, 6]
>>> del myList[2]
>>> myList
[3, 5, 6]

3 5 62

 , , , myList , ,

b

• Can also del whole slices
• I rarely need or use del

Objects, equality, and identity
There is an operator in Python called is
>>> x is y
True if x and y refer to same object (in computer memory), False
otherwise.
 You don’t often need to use is but you should be aware of when
two variables refers to the same mutable object. This is called
aliasing.

As we’ve seen:
>>> x = [1,2,3]
>>> y = x
>>> x is y
True
>>> x[1] = 100 y and x are aliases for the same list
>>> y[1] object
?

Objects, equality, and identity
>>> x = [1, 2, 3] constructs a list containing 1, 2, 3
>>> y = [1, 2, 3] constructs a (new/different) list
>>> x is y x, y are not aliases
False they are bound to different objects
>>> x == y they are still considered equal, though,
True which is what you usually care about
>>> y[0] = 100
>>> x
???

1

x

y
 , ,

 , ,

2 3

100

Avoiding aliasing?
Often, we want to avoid aliasing. So, given a list, can we easily make a copy? YES!

>>> x = [1, 2, 3]
>>> y = x
>>> z = x[:] range[:] is “full range” so a new list
 with all the elements of the original
>>> x is y
True
>>> x is z
False
>>> x == y
True
>>> x == z
True
>>> z[0] = 100
>>> y[0] = 50
>>> x
?
>>> y
?

Objects, equality, and identity
>>> x = [1, 2, 3]
>>> y = x
>>> z = x[:]

>>> z[0] = 100
>>> x
???

1

x

z
 , ,

 , ,

2 3

100

y

Objects, equality, and identity
But, be careful!

>>> x = [1, 2, [30, 40]]
>>> y = x
>>> z = x[:]
>>> x is y
True
>>> x is z
False

>>> z[0] = 100
>>> x
?
>>> z[2][1] = 50
>>> x
?

Objects, equality, and identity
>>> x = [1, 2, [30, 40]]
>>> y = x
>>> z = x[:]

>>> z[0] = 100
>>> z[2][1] = 50
>>> x
???
>>> x
???
>>> Z[2] = 6
>>> z
???
>>>x
???

1

x

z
 , ,

 , ,

2 ,

100

y

30
40

50

[:] is a shallow copy. There are ways to do deep copy
(maybe we will discuss later in the semester)

6

Problem like HW3 Q1

Suppose goal is to find second and third smallest letters, and most common letter

A two-part approach (you can do it “all at once” if you want but many people will
find separating the two easier):

find second and third smallest
 # go through string char by char updating values for
 # three simple variables:
 # smallest, secondSmallest, and thirdSmallest

find most common
 # presume you have a function howMany(c, s) that
 # returns the number of times c occurs in s
 # Using a loop simply go through string char by char,
 # calling howMany(char, s) for each char and comparing result with a #
maxOccurrencesSoFar variable, updating when appropriate

print results

howMany(c, s)
is easy to write!

Hint: consider using None for initializing variables

HW3 Q1

find second and third smallest
 # go through string char by char updating values for
 # three simple variables:
 # smallest, secondSmallest, and thirdSmallest

smallest:

secondSmallest:

thirdSmallest:

?

?

?

e

e

c

c

e

d

b

d

e

b f

d

a

a

c

c
/

/

/

/

/ /

/

/

/

/ / b

Discussion section 4

• Will work with files of many words and write code to find sets of
anagrams (words with same letters but different order). E.g. art,
rat, tar

• What if we wanted to find the largest set of anagrams?
– simple direct approach

biggestAnagramList = []
for word in wordList:
 anagramList = getAnagramsOf(word, wordList)
 if len(anagramList) > len(biggestAnagramList):
 biggestAnagramList = anagramList

– Works okay for a couple thousand words (words5.txt) but far too slow
for 100+K list like wordsMany.txt

– Problem to think about: can you efficiently find largest anagram set?

biggestAnagramSet.py

Next Time
• One more part of Ch 10 – 10.22, list comprehensions

• Start Ch 12 - dictionaries

