
CS2110 Lecture 11 Feb. 17, 2021
• HW3 due Monday, 10pm
Last time
• Looping with for
• Discussion of HW3 Q1
• Started Chapter 10: lists
Today
• A debugging example and some programming advice
• more Ch10, particularly the important property:

• lists are mutable
It is very important to understand the consequences of list
mutability. It can be confusing if you don’t take time to
understand it

A debugging example

def is_reverse(word1, word2):
 if len(word1) != len(word2):
 return False
 i = 0
 j = len(word2) - 1

 while j >= 0:
 if word1[i] != word2[j]:
 return False
 i = i + 1
 j = j - 1

 return True

is_reverse should
return True if word1
is the reverse of
word2.
I.e. is_reverse(“abc”,
“cba”) should return
True while
is_reverse(“ab”,
“ab”) should return
False

Is code correct?

code in lec11.py

Programming advice
Be careful with variable names:
• Don’t use ..index.. when it’s bound to a value other an index!
• Don’t change type of thing variable is bound to – use a different variable!

cost1 = 23.0
cost2 = 143.
for index1 in string1: <— index1 is not an index
 index2 = 0
 while index2 < len(string2):
 if string1[index1] == string2[index2]: <— error here
 cost1 = “The cost is:” + str(cost1) <— dangerous to change
 index2 = index2 + 1 change type of
… object bound to var.
… cost1 was a number,
print(cost1) now a string
if (cost1 < cost2):
 print(“Option 1 is the better one!”) oops, error. Forgot

 cost1 now a string

Ch 10: lists
• list is another Python sequence type
• In a string, each item of the sequence is a character
• In a list, each item can be a value of any type! (and can be as long

as you want)
• The most basic way to create a list is to enclose a comma-

separated series of values with brackets:

>>> [1, ‘a’, 2.4]
[1, ‘a’, 2.4]

>>> myList = [1, ‘a’, 2.4] [] operator and len()
>>> len(myList) function work on both
 3 strings and lists
>>> myList[0]
1

Ch 10: lists
I said the items in a list be any type. So, can lists be
elements of lists? YES!

>>> myList = [1, 2, [‘a’, 3]] we call this a
>>> len(myList) “nested list”
3
>>> myList[2]
[‘a’, 3]
>>> myList[2][1]
3
>>> myList[1][2]
Error

Ch 10: lists
A list can have no elements!

>>> myList = [] we call this an
>>> len(myList) “empty list”
0
>>> myList[0]
Error

Ch 10: list operations
slices, +, * work similarly to how they work on strings

>>> myList = [1, 2, 3, 4, 5]
>>> myList[1:3]
[2,3]
>>> myList + myList
[1,2,3,4,5,1,2,3,4,5]
>>> myList = myList + [6]
>>> myList
[1,2,3,4,5,6]
>>> myList = myList + 6
Error
>>> myList = myList + [[6]]
>>> myList
[1,2,3,4,5,6,[6]]
>>> 2 * myList
[1,2,3,4,5,6,[6],1,2,3,4,5,6,[6]]

Ch 10: lists are mutable!
• Strings are immutable. You can’t change them.
>>> myString = ‘hello’
>>> myString[0] = ‘j’ ! Error

• But lists are mutable! You can update lists
>>> myList = [1, 2, ‘hello’, 9]

>>> myList[1] = 53 you can replace a item in a list with a
 >>> myList new value
[1, 53, ‘hello’, 9]

>>> myList.append(‘goodbye’) you can add new items to the end
>>> myList of a list
[1, 53, ‘hello’, 9, ‘goodbye’]

>>> myList2 = [3, 99, 1, 4] you can even sort! Note: Python’s sort rearranges
>>> myList2.sort() the items directly within the given list. It doesn’t
>>> myList2 yield a new list with same items in sorted order
[1, 3, 4, 99] (different function, sorted, yields new sorted list)

Examples: looping with lists lec11.py

• negativeListFrom(l)
• listOfBiggests(list1, list2)
• listOfBiggests2(list1, list2)
• getAverages(listOfLists)

List mutability
>>> a = 3
>>> myList = [a, a, 5]
>>> myList[0] = 4
>>> a = 100

>>>myList
???

a

myList

3

 , ,
5

100

myList[0] = 4 does not affect a’s value!
a = 100 does not affect list!

4

What happens here? Can you draw the updates?
>>> a = 3
>>> myList = [a, a, 5]
>>> myList2 = myList
>>> myList[0] = 4
>>>myList
???
[4, 3, 5]
>>>myList2
???
[4, 3, 5]
>>> myList = []
>>> myList
[]
>>> myList2
???
[4, 3, 5]

a

myList

3

 , ,
5

myList[0] = 4
 - does not affect a’s value!
 - does affect myList2’s value

4myList2

VERY IMPORTANT! CAN
BE CONFUSING!

[]

list +

>>> myList = [3, 5]
>>> myList2 = [2, 6]
>>> myList3 = myList +
myList2
>>> myList3
[3, 5, 2, 6]
>>> myList2[0] = 1
>>> myList3[0] = 7
>>> myList
?
>>> myList2
?
>>> myList3
?

myList
3

 ,

5 6

myList2

 ,

2

 , , , myList3

1

7

IMPORTANT: + on lists yields a NEW list

 append and sort

>>> a = 3
>>> myList = [5, 2, 1]
>>> myList2 = myList
>>> myList.append(a)
>>> myList2.sort()
>>>myList
?
>>>myList2
???

a

myList

3

 , ,

2

5myList2

 ,

1

SUPER IMPORTANT: unlike +, which does NOT modify the lists
involved, append and sort MODIFY the list.

Ch 10: examples
• Write a function that takes two lists as input and

returns a list of all pairs [i1, i2] where i1 in an item
from the first list and i2 is an item from the second
list pairs
– e.g. [1,2] and [3,4,5] ->
 [[1,3], [1,4], [1,5], [2,3], [2,4], [2,5]]

• Write a function that, given a list of zero or more
sublists of zero or more numbers, returns a list of
numbers in which the ith number is the sum of the
numbers in the ith sublist.
– e.g [[2,3], [23], [1,1,1]] -> [5, 23, 3] lec11b.py

Next Time

Finish Chapter 10
• more on list mutability
• “aliasing”
• lists as arguments to functions
List comprehensions

