
CS2110 Lecture 10 Feb. 15, 2021
• HW2 scores have been posted
• Test 1 has been graded

 median: 8
 high: 15 (1 person, 5 at 14)

• DS Assignment 3, due tomorrow/Tuesday, 10pm
• Again, optional to attend BUT this time TA will walk students

through some of the examples
• HW3 is available, due next Monday, 10pm
Today
• HW3 Q1 overview and advice
• An alternative looping construct, for

Score 1-3 4-6 7-9 10-12 13-15

of people 2 4 4 3 6

We seen looping over strings with while
Using [] and len, you can write while loops that do things
with each character in a string:

 currentIndex = 0
 while currentIndex < len(myString):
 currentChar = myString[currentIndex]
 ….
 …. (loop body – typically does something
 …. with character, currentChar)
 ….
 currentIndex = currentIndex + 1

We’ll continue to practice this over the next couple of weeks; it is very
important that you understand this general pattern of stepping through a
string (or, later, other sequence) by using a loop and incrementing an index

 for loops and strings
Python provides an alternative, more concise way to iterate over strings

 for currentChar in myString:
 ….
 …. (loop body – typically does something
 …. with character, currentChar)
 ….

The body of the for loop gets executed once for each character in the
string, myString. On the first iteration, currentChar is bound to the first
(i.e. index 0) character of myString. On the second iteration,
currentChar is bound to the second (i.e. index 1) character, etc. This
loop and the one on the previous page are equivalent! You need to be
able to convert for loops to equivalent while loop! It’s a simple
“robotic” process (and I almost always test this on the first exam)
lec10loopchars.py

Looping on strings with for
def findChar(charToFind, stringToSearch):
 for char in stringToSearch: lec10findChar.py
 if char == charToFind:
 print(‘found it’)
 return <— leaves function immediately

But what if specification is instead to return the
index of character if found, and length of given
string if not?

Looping on strings with for

def findChar(charToFind, stringToSearch):
 indexOfCharSought = len(stringToSearch) lec10findChar.py
 currentIndex = 0
 for char in stringToSearch:
 if char == charToFind:
 indexOfCharSought = currentIndex
 break <— exits loop immediately*
 currentIndex = currentIndex + 1
 return indexOfCharSought
What is different if we remove break Is the result different/still
correct?

* Be careful; if not used well break can yield confusing code

Ch 9.13: string in operator

• ‘a’ in myString returns True if ‘a’ is in
 myString, False otherwise

Write function inBoth(string1, string2) that prints all
characters that appear in both:

 def inBoth(string1, string2):
 for c in string1:
 if c in string2:
 print(c)

Demo/exercises

• lec10exercises.py debugging exercises
involving for and strings

Problem like HW3 Q1

Suppose goal is to find second and third smallest letters, and most common letter

A two-part approach (you can do it “all at once” if you want but many people will
find separating the two easier):

find second and third smallest
 # go through string char by char updating values for
 # three simple variables:
 # smallest, secondSmallest, and thirdSmallest

find most common
 # presume you have a function howMany(c, s) that
 # returns the number of times c occurs in s
 # Using a loop simply go through string char by char,
 # calling howMany(char, s) for each char and comparing result with a #
maxOccurrencesSoFar variable, updating when appropriate

print results

howMany(c, s)
is easy to write!

Hint: consider using None for initializing variables

HW3 Q1

find second and third smallest
 # go through string char by char updating values for
 # three simple variables:
 # smallest, secondSmallest, and thirdSmallest

smallest:

secondSmallest:

thirdSmallest:

?

?

?

e

e

c

c

e

d

b

d

e

b f

d

a

a

c

c
/

/

/

/

/ /

/

/

/

/ / b

Ch 10: lists
• list is another Python sequence type (string was our first)
• In a string, each item of the sequence is a character
• In a list, each item can be a value of any type!
• The most basic way to create a list is to enclose a comma-

separated series of values with brackets:

>>> [1, ‘a’, 2.4]
[1, ‘a’, 2.4]

>>> myList = [1, ‘a’, 2.4] [] operator and len()
>>> len(myList) function work on both
 3 strings and lists
>>> myList[0]
1

Ch 10: lists
I said the items in a list be any type. So, can lists be
elements of lists? YES!

>>> myList = [1, 2, [‘a’, 3]] we call this a
>>> len(myList) “nested list”
3
>>> myList[2]
[‘a’, 3]
>>> myList[2][1]
3
>>> myList[1][2]
Error

Ch 10: lists
A list can have no elements!

>>> myList = [] we call this an
>>> len(myList) “empty list”
0
>>> myList[0]
Error

Ch 10: list operations
slices, +, * work similarly to how they work on strings

>>> myList = [1, 2, 3, 4, 5]
>>> myList[1:3]
[2,3]
>>> myList + myList
[1,2,3,4,5,1,2,3,4,5]
>>> myList = myList + [6]
[1,2,3,4,5,6]
>>> myList = myList + 6
Error
>>> myList = myList + [[6]]
[1,2,3,4,5,6,[6]]
>>> 2 * myList
[1,2,3,4,5,6,[6],1,2,3,4,5,6,[6]]

Ch 10: traversing lists
Just like we often want to iterate through the characters of a
string, we often want to “traverse” lists, doing some computation
on each list item in turn. Like they are for string, for loops are
again concise and useful

 for element in [‘a’, 2, ‘word’, [‘1,2’, 3]]:
 if type(element) == list:
 print(‘list of length:‘, len(element))
 else:
 print(element)
yields:
 a
 2
 word
 list of length: 2

Traversing lists with for

for number in l:
 if number < 0:
 print(“negative”)
 else:
 print(“not negative”)

The range function
Python’s range function is very useful. There is no one clear
place in the text where it is presented. It is first mentioned in 4.7
of the Turtle chapter, and then used in examples in Ch 9 and 10.

The range function produces values of a range type
The range type is another sequence type, like list and string.

range(9) is a sequence of the integers 0, 1, …, 8
range(2,6) is sequence 2, 3, 4, 5
range(2,13,3) is sequence 2, 5, 8, 11

Since range is a sequence type, (most of) the standard sequence
operations apply (not nicely specified anywhere in text – go to
Python sequence docs on-line)

https://docs.python.org/3/library/stdtypes.html

range – standard sequence ops
>>> 5 in range(9)
True
>>> 5 in range(2,10,2)
?
>>> len(range(2,10,2))
?
>>> myRange = range(2,20,2)
>>> myRange[3:6]
?
>>> range(5) + range(5)
?

Ch 10: range – Python 3 vs Python 2
In Python 2, range is just a function that produces a list:
>>> range(9)
[0, 1, 2, 3, 4, 5, 6, 7, 8]

In Python3, range(9) is an object that represents the same
sequence of numbers, but it not a list.
>>> range(9)
range(9)

Note: in Python 3, you can still use range to build an ordered
list of numbers:
>>> list(range(9))
[0, 1, 2, 3, 4, 5, 6, 7, 8]

Next time

The rest of Ch 10. Much of it is related to important
property of lists:
• lists are mutable!
It is very important to understand the consequences of
list mutability. It can be confusing if you don’t take time
to understand it!

Exercise to think about. Lists make it
easy to implement
printLetterCounts(inputString, letters)
that prints the number of occurrences
in inputString of each letter in letters

>>> printLetterCounts("This is a sentence containing a
variety of letters", "aeiouy")
'This is a sentence containing a variety of letters' has:
 4 'a's
 6 'e's
 5 'i's
 2 'o's
 0 'u's
 1 'y's
 and 32 other letters

• Examples looping with lists and range lec11.py

Next time

The rest of Ch 10. Much of it is related to important
property of lists:
• lists are mutable!
It is very important to understand the consequences of
list mutability. It can be confusing if you don’t take time
to understand it!

Exercise to think about. Lists make it
easy to implement
printLetterCounts(inputString, letters)
that prints the number of occurrences
in inputString of each letter in letters

>>> printLetterCounts("This is a sentence containing a
variety of letters", "aeiouy")
'This is a sentence containing a variety of letters' has:
 4 'a's
 6 'e's
 5 'i's
 2 'o's
 0 'u's
 1 'y's
 and 32 other letters

• Examples looping with lists and range lec11.py

