
CS2110 Lecture 8 Feb. 10, 2021
• HW2 due tomorrow night
• Note: Q2 says “no string methods” are allowed. But

the len() function is allowed. It is not a string method.
• Quiz 1 on Friday in class
Last time
• Strings (Ch 9) and while loop examples
Today
• More while loops

• Collatz example. Can we always know whether loops
terminate or not?

• charExamples.py, relevant to HW2 Q3
• Development of printFirstNPrimes

While loop termination again Ch 8.5
• We (usually, but not always) want loops to terminate.

People sometimes work to formally prove that a loop
terminates

• But sometimes we’re we’re
we’re not sure! Consider:

• This is known as the Collatz or 3n+1 problem (https://
en.wikipedia.org/wiki/Collatz_conjecture) No one has been able
to prove that this will terminate for all positive n! collatz.py

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

A looping example helpful for Q3 of HW2

• Q3 asks you to write a function that takes three inputs:
• a string, inputString, of lower case characters
• A string, minLetter
• A string, lettersToIgnore

and returns 1) the “smallest” character in inputString that is
both greater than minLetter and not in lettersToIgnore, and
2) the highest index at which that letter occurs

• Study the three functions in charExamples.py to help you get
started. They use simple loops and no string operations
other than “in”. It’s good to practice this kind of loop
pattern: iterating through a string maintaining one or more
variables related to a “best” or “minimum” or “largest”

lec7primes.py : printFirstNPrimes
• A prime number is an integer greater than one

that has no divisors other than 1 and itself.
– 2, 3, 5, etc.

• Goal: implement function printFirstNPrimes(n)
that takes integer n as input and prints the first n
prime numbers.
>>> printFirstNPrimes(4)
2
3
5
7

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 # starting at 2, count upwards, testing
 # candidate integers for primeness,
 # printing those that are prime
 # and stopping after n
 # have been printed

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 candidate = 2
 while (numPrimesPrinted != n):
 # test candidate for primeness
 # print, update numPrimesPrinted if prime
 candidate = candidate + 1

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 candidate = 2
 numPrimesPrinted = 0
 while (numPrimesPrinted != n):
 # test candidate for primeness
 # print, update numPrimesPrinted if prime
 candidate = candidate + 1

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 candidate = 2
 numPrimesPrinted = 0
 while (numPrimesPrinted != n):
 isPrime = numIsPrime(candidate)
 # print, update numPrimesPrinted if prime
 candidate = candidate + 1

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline. Incrementally
refine and implement steps.

def printFirstNPrimes(n):
 candidate = 2
 numPrimesPrinted = 0
 while (numPrimesPrinted != n):
 isPrime = numIsPrime(candidate)
 if isPrime:
 print(candidate)
 numPrimesPrinted = numPrimesPrinted + 1
 candidate = candidate + 1
Now, just need to implement numIsPrime() BUT first test this
code using “stub” numIsPrime() ! lec7primes.py

stub like this VERY
USEFUL for testing!!

def numIsPrime(n):
 isPrime = True
 return isPrime

Next: finish printFirstNPrimes by replacing stub isNumPrime with correct
code

Again, develop isNumPrime in top-down fashion:

def isNumPrime(n):
presume number is prime
check potential divisors 2 .. n-1. If any evenly divides n
then n is not prime

Top-down design of printFirstNPrimes
Now develop isNumPrime in similar fashion:

def isNumPrime(n):
 isPrime = True

check potential divisors 2 .. n-1. If any evenly divides n
then n is not prime

Top-down design of printFirstNPrimes
Now develop isNumPrime in similar fashion:

def isNumPrime(n):
 # presume number is prime
isPrime = True
check potential divisors 2 .. n-1. If any evenly divides n
potentialDivisor = 2
while potentialDivisor < n:
 # check if potential divisor evenly divides n,
 # update isPrime if it does
 potentialDivisor = potentialDivisor + 1

return isPrime

Top-down design of printFirstNPrimes
Now develop isNumPrime in similar fashion:

def isNumPrime(n):
 # presume number is prime
isPrime = True
check potential divisors 2 .. n-1. If any evenly divides n
potentialDivisor = 2
while potentialDivisor < n:
 # check if potential divisor evenly divides n,
 # updating isPrime if it does
 if (n % potentialDivisor) == 0:
 isPrime = False
 potentialDivisor = potentialDivisor + 1

return isPrime

Note: this can be improved:
1) When find divisor, stop searching,

return False
2) Search doesn’t need to go to n-1.

Can stop when potential divisor
reaches square root of n (if n has
divisor bigger than its square root,
it must also have one smaller)

BUT general rule: worry about correctness
before working on optimizations like thislec7primes.py

Next time
Quiz 1, in class

