
CS2110 Lecture 7    Feb. 8, 2021
• HW1 has been graded. Read the comments.  Most people 

had some logic errors 
• DS2 assignment tomorrow 
• HW2 due Thursday 
• Quiz 1 this Friday in class 
Last time 
• Finished conditional execution, if-elif-else, Chapter 7 
• Began Ch 8 - iteration and while loops 
Today 
• Before continuing with loops, some basic string operations 

and methods 
• More on while loops



Terminology: what are Python methods?
• Python methods are special kinds of functions that are called using a 

different syntax. We’ll see them a lot when working with strings. 

• Methods are invoked/called using “dot notation”. Some people find it 
confusing:     

>>> ‘AbCd’.lower()   invokes the String method lower, a function specific 
‘abcd’     to strings BUT you can think of it as lower(‘AbCd’) 

>>> ‘abcde’.index(‘d’)               invokes the String method index. You can think of it as   
3                                                   index(‘abcde’, ‘d’) 

                                                     (In fact, it is even possible to invoke methods in the “usual”  
                                                      function call style. E.g. str.lower(“AbCd”) and      
                                                     str.index(‘abcde’, ‘d’)) 

WE’LL TALK A LOT MORE ABOUT METHODS AS WE PROGRESS THROUGH THE COURSE.



Intro to Ch9: Strings
• So far, we’ve used strings to print things and only discussed one string 

operator, +. There are many other string operators and functions 
• 9.3 covers +, * on strings 

>>> “hi “ + “jim”  
”hi jim” 
>>> “go” * 3 
“gogogo” 

• And len() provides the number of characters 
>>> len(myString) 
6 

• 9.4 You can get individual characters within a string via the [] operator: 
>>> myString = “python” 
>>> myString[0] 
‘p’ 
>>> myString[3] 
‘h’ 

 The expression inside the brackets is called an index 
– In Python the first element has index 0 !!!  ! IMPORTANT



9.4 String operations and indexing

•  Can also use negative indices!  

s[-1] for any string s is the last character of string 

>>> ‘hello’[-1]  
‘o’ 

Equivalent to, but more convenient than, 
s[len(s)-1] 
              



Ch 9.5: string methods   
• We use strings a lot in Python. Python provides many 

special built-in functions, called methods, for strings.   
• Methods are called/invoked using a different syntax, dot 

notation (some people find it confusing): 

>>> ‘abcd’.upper()    invokes the built-in string 
‘ABCD’        upper function 
         NOTE: You can think of it as 
          upper(‘abcd’) 

• There are a quite a few:  Look them up – I won’t go over 
many of them in detail.

https://docs.python.org/3/library/stdtypes.html#string-methods


Ch 9.5: string methods   
>>> myString = ‘hello’ 
>>> myString.count(‘l’)   Again, you can think of it 
2          as: count(myString, ‘l’)  
>>> ‘ababcab’.count(‘ab’) 
3 
>>> ‘eeeeeee’.count(‘ee’) 
?  

>>> myString.index(‘l’) 
2           index and find nearly the same 
>>> myString.find(‘l’)    but look up in docs! (give 
2                different result when not found)



Ch 9.5: string methods   
>>> 'This is a sentence.'.split() 
['This', 'is', 'a', 'sentence.’]   a list (we’ll study lists soon) 

>>> '1,2,104,7,12'.split(',')  
['1', '2', '104', '7', '12'] 

>>> '    non-whitespace  '.strip() 
'non-whitespace’ 

>>> '.'.join(['www', 'uiowa', 'edu']) 
'www.uiowa.edu’ 

     Note: these three are very commonly  
     used when reading in data from files



Ch 9.7: string slices    
• We’ve seen [] used to access one character of a 

string  
• It can also be used to extract a series of elements 

from a string. This is called slicing. 

>>> ‘abcdefghij’[4:7]    yields a new string consisting 
‘efg’        of the index 4, 5, and 6 chars 

• ‘abcdefghij’[:5] is the same as ‘abcdefghij’[0:5] 
• myString[3:] is the same as 

myString[3:len(mystring)]



9.8 string comparison
• ==, <, > work on strings 

– but understand that results might not be what you expect 
‘a’== ‘A’ -> False 
‘apple’ < ‘Banana’ -> False 
‘apple’ < ‘Apple’ -> False 
‘A’ < ‘a’ -> True 
‘a’ < ‘b’ -> True 
‘A’ < ‘B’ -> True 

• Note: Python has ord() and chr() functions to turn characters into 
integer values (Unicode point values) 
– ord(‘a’) -> 97 
– chr(97) -> ‘a’ 

– chr(8986) -> ‘⌚ ’ 
– chr(9096) -> ‘⎈’ 
DO NOT use ord/chr in homework (unless explicitly told to do so)! Usually, 
there is no reason to. Usually you should just compare characters directly.



Ch 9.9: strings are immutable! 
• You might want to do: 
 >>> myString = ‘fun’ 
 >>> myString[0] = ‘s’   ! ERROR 

 hoping to change ‘fun’ to ‘sun’ 
 You cannot do this in Python. Strings cannot be modified! (this is  
different than several other popular programming languages) 

• You can easily build new strings but you can’t directly modify strings. 
  
 >>> myString = ‘fun’ 
 >>> myString = ‘s’ + myString[1:]  
 >>> myString 
 ‘sun’       ! THIS A NEW STRING. ‘fun’ didn’t  
         change. Remember: myString is    
                     just a name



(last time) Ch 8.2: Iteration – the while statement 
• Many computations involve repetition, doing the 

same (or nearly the same) things repeatedly (perhaps 
a few times, perhaps billions of times) 

• You could already write a program to, say, print out 
the first 1000 integers  
 def printFirstThousand(): 
 print(1) 
 print(2) 
 … 
 print(1000) 

• But Python (and other languages) provide statements 
to conveniently describe and control repetitive 
computations.



(last time) Ch 8 – the while statement 
The while statement provides a very 
general mechanism for describing 
repetitive tasks. 
 … 
 … (B1: code before while) 
 … 
 while boolean expression: 
  … 
  …  (B2: code in while body) 
  … 
 … 
 …   (B3: code after while) 
 …

What happens?   
1. Execute B1 code 
2. Evaluate Boolean exp 
3. If True, do 
 3a. eval B2 code.  
 3b. jump to step 2    
again 
     If False, ignore B2  code 
and simply  continue with 
step 4 
4. Execute B3 code 

  



Designing while loops  
When designing loops: 
• Typically, just before while statement, set variables 

that ensure truth of boolean condition (also called 
“loop guard”) 

• Within loop, update one or more variables of the loop 
guard expression.  In many simple loops, this is often 
done at the end of the loop body.   

• Carefully reason about your loop body and loop 
guard, convincing yourself that eventually the loop 
guard will become false (Note: sometimes, people 
formally prove these things. E.g. when validating 
software for, say, flight control systems)



lec7while.py while examples  
• whileFn: sometimes loop body never executes 
• whileFn2: sometimes loop body never 

terminates. Often this is due to a design error, 
but sometimes on purpose. 

• whileFn3: using a while loop to process user 
input  

• countDownBy3From:  
– Different behavior on different inputs?  For what 

inputs does countDownBy3 from not terminate? 
• loopChars: strings and while. Looping over strings



Strings and while
Using [] and len, you can write while loops that do things 
with each character in a string. (loopChars in lec7while.py) 

 currentIndex = 0 
 while currentIndex < len(myString): 
  currentChar = myString[currentIndex] 
  …. 
  …. (loop body – typically does something  
  …. with character, currentChar) 
  …. 
  currentIndex = currentIndex + 1 

We’ll talk about this over the next couple of weeks; it is very important that 
you understand this general pattern of stepping through a string (or, later, 
other sequence) by using a loop and incrementing an index



Any  questions on Q3 of DS2?

REMEMBER! MATH ONLY - NO STRING  
OPERATIONS ARE ALLOWED!!



HW2 Q1 hint

Hint: use a simple loop to iterate over chars on origString. 
Initialize a variable for new/result string. On each iteration of 
the loop, add something to the new string 

 while …. 
  if … 
   update result string in some way 
  else: 
   update result string in a different way 

 return result string



A looping example helpful for Q3 of HW2  

• Q3 asks you to write a function that takes three inputs: 
• a string, inputString, of lower case characters  
• A string, minLetter 
• A string, lettersToIgnore 

and returns 1) the “smallest” character in inputString that is 
both greater than minLetter and not in lettersToIgnore, and 
2) the highest index at which that letter occurs   

• Study the three functions in charExamples.py to help you get 
started.  They use simple loops and no string operations 
other than “in”.  It’s good to practice this kind of loop 
pattern: iterating through a string maintaining one or more 
variables related to a “best” or “minimum” or “largest”



Next time  
More on iteration, Ch 8, including development of function 
printFirstNPrimes: 

• A prime number is an integer greater than one that has 
no divisors other than 1 and itself.  
– 2, 3, 5, etc. 

• Goal: implement function printFirstNPrimes(n) that takes 
integer n as input and prints the first n prime numbers.   

>>> printFirstNPrimes(4) 
2 
3 
5 
7


