
CS2110 Lecture 5 Feb. 3, 2021
• HW1 due tomorrow
• DS1 Assignment graded
• Last time

– Math functions and the math module
– Chapter 6: introduction to function calls and defining new functions
– HW1 information and advice

• Today
– BeginningCh 7: logical/Boolean expressions, conditional execution – if / else
– More Ch 6 on functions

• Execution flow of control
• Variables and parameters are local
• Stack diagrams
• return vs. print

– More on HW1
• Floor division (//) and modulus (%) operators (from Ch 2.7)
• Math.ceil() function
• String format and controlling number of printed decimal places
• Fruitful functions, incl return vs. print

From last time: Ch 6 - Defining New Functions
def foo(a, b, c):
 temp = a * b
 result = temp + c
 return result
 IMPORTANT
When executing a function call:
 1) first, the function’s parameter variables are bound to the
values of the function call’s arguments
 2) then, body of the function is executed

>>> x = 3
>>> foo(x * x, x + 1, 3) ! foo will be executed with variable a
bound to 9, b bound to 4, c bound to 3

 foo “knows” nothing about x. x *isn’t*
 passed in. 9, 4, and 3 are passed into foo.

Ch 6: Defining New Functions
Functions can have zero parameters:
 def giveBack1():
 return(1)

 >>> giveBack1()
 1
You can type the function name at interpreter prompt:
 >>> giveBack1
 <function giveBack1 at 0x10367cb70>
 >>> type(giveBack1)
 <class 'function’>

Note: a function name is just like any other variable. It is bound to a value; in this case that value
is a function object. Don’t try to use that same name as a simple variable (e.g. giveBack1 = 3).
You’ll “lose” your function. You can even “break” Python – it doesn’t prevent you from redefining
built-in things:
 >>> len(“hello”) # len is an important standard Python function!
 5
 >>> len = 23
 >>> len(“hello”)
 ERROR

Before looking at functions in more depths, we’ll skip to Ch 7:
Conditional execution

• Recall list of key programming components:
Expressions, variables and assignment, functions,
if-then-else (conditional execution), iteration

• We’ve covered three of them – expressions,
variables and assignment, the basics of functions.
Can’t easily compute a lot yet. Need the last two
– conditional execution and iteration.

• Before looking at functions in more depth (more
Ch 6), we’ll skip to basic “conditional execution”
from Ch7 so that I can use if/else in examples

Ch7.1-7.3: Boolean expressions and
 Logical Operators

• Boolean expressions: have True/False as value
E.g. 3 == (5 – x).

• Boolean/relational operators:
 <, >, >=, <=, !=
 E.g. (x + y) < 4

• Logical operators
 and, or , not
 E.g. (x < 5) or (z == “foo”)

Understand these well. Critical for conditional
execution, decision making in programs!

Ch7.4-7.7: Condition execution - if
The most basic conditional statement is if

 if (Boolean expression):
 …
 … lines of code that execute when Boolean
 … expression evaluates to True
 …
 … more lines of code. These execute whether or
 … not Boolean expression evaluated to True
 …

Ch7: Condition execution – if-else

 if (Boolean expression):
 …
 … code that executes when Boolean expr
 … evaluates to True
 else:
 …
 … code that executes when Boolean not true
 …
 …
 … code that executes after if-else statement, whether
 … Boolean expression was True or not
 …

Ch7: if-else
print(‘before if’)
if (a < b):
 print(‘a is smaller’)
else:
 print(‘a is not smaller’)
print(‘after if’)
print(‘goodbye’)

NOTE: indentation semantically important. Has
execution effect.

Return to Ch 6/Functions: Control Functions
A program consists of a list of instructions, executed
(except in certain situations) in top-to-bottom order

x = 3
y = x + 13
z = foo(x, y, 3)
newVal = math.sqrt(z)
result = x + newVal
print result

def foo(a, b, c):
 temp = a + (b * c)
 temp = temp/3.0
 return temp

!1
!2
! 3
!7
!8
!9

! 4

! 5

! 6

As part of 3, foo parameter
a is bound to 3 (not x!)
b is bound to 16 (not y!)
c is bound to 4

Ch 6.4: Variables and parameters are local
• A function’s parameters are local variables. That is, they exist only

during the execution of that function.
• Other variables that are assigned-to within a function body are

also local (note: we’ll see exception to this later)
• Top-level variables (not within defs) are called global

 def foo(a, b): >>> foo(3, 4)
 c = (a + b) * 2 14
 return(c) >>> a
 Error
 >>> c
 IMPORTANT! Error

Ch6: local/global variables

• Another way to say this is that each function has its own
scope or namespace

>>> def f(x):
 y = 1
 x = x + y
 print(x)
 return x

>>> x = 3
>>> y = 2
>>> z = f(x)
4
>>> x
?
>>> y
?
>>> z
?

Function f’s variable x. A local
variable that exists only
within scope of definition of f

“Top-level” or global
variable x

Two completely
different variables!

Hint:
think of
them as,
e.g., xf
and
xglobal

3

2

4

Ch6: Stack frames
• At top level (the interpreter/shell) a “symbol table”

keeps track of all variables (and values bound to
them) defined at that level

• When a function is called, a new symbol table , or
stack frame, is created to keep track of variables
defined in the function and the values associated
with those names. This includes (1) the function’s
parameters and (2) any other variables assigned to
within the function
– When the function finishes, the stack frame goes away.

• Note: this isn’t just one level, of course. As functions
call other functions that call other functions, the
stack (of stack frames) grows deeper …

Ch6: Stack frames

>>> def f(x):
 y = 1
 x = x + y
 print(x)
 return x

>>> x = 3
>>> y = 2
>>> z = f(x)
4
>>> x
>>> y
>>> z

main:

f: x 3
 y

4

X 4

1

y 2
x 3

Will demo/discuss more complex
example Friday

z

return vs print

print and return are very different (and some
students never quite get this!)

 def add1a(number):
 result = number + 1
 return result

 def add1b(number):
 result = number + 1
 print(result)
Explore difference by using invoking them in shell in a couple of
ways.

Ch 6: Why functions?

• Functions let you name a group of statements that make
up a meaningful computation.

• Make programs easier to read and debug
– E.g. debug functions one by one, assemble into whole

program
• Make programs shorter (in lines of code) by eliminating

duplication. If you start seeing same (or nearly the same)
segments of code in various places in your program,
consider defining a function and replacing the common
segment with function calls.

• Well designed functions often useful in other programs
you write.

HW1, including formatting string and outputting numbers with fixed number of
decimal digits

• Take baby steps:
– write a line or two
– test
– repeat!

• While debugging, use lots of print statements!
– Sometimes even worth printing values after every line of code!
– (remember to comment out/remove such debugging statements before submitting your

homework)
• Consider using math.ceil() function for computing nights needed
• Some people have asked me about lastDayFraction in my HW1 suggested outline.

There are many ways to do things. That’s just how I think about it. Once the
number of nights needed is known, what costs can we compute?
– Hotel costs breakfast cost, dinner cost ✅

– Lunch cost ❌
– I calculate a value lastDayFraction to enable lunch cost calculation

• string format method makes it easy to print nice complicated strings and to control
number of decimal places in printed numbers:

>>> item = ‘bicycle’
>>> x = 423.1274123
>>> print(“The cost of the {} is {:.2f}”.format(item, x))
https://docs.python.org/3.9/library/string.html#format-string-syntax

https://docs.python.org/3.9/library/string.html#format-string-syntax

Floor Division and Modulus (Ch 2.7) and math.ceil function

• //: “floor division operator. Divides two numbers
and truncates (rounds down) to whole number
14 // 3 yields 4
8.1 // 2 yields 4.0

• %: modulus operator yields remainder
11 % 3 yields 2
((14 // 3) * 3) + (11 % 3) == 14 and in general (except for

possible floating point issues), ((n // d) * d) + (n % d) == n

• math.ceil(x) yield nearest integer equal or greater
than x. E.g. math.ceil(23.01) -> 24 and
math.ceil(16.0) -> 16

% very useful for, e.g., odd/even tests

Hint: I use this as key part of
calculating required hotel nights

HW1: function tripCostData
def tripCostData(distanceKM, vehSpeedMPS, vehKPL, gasCostPerLiter,
hotelCostPerNight, breakfastCostPerDay, lunchCostPerDay,
dinnerCostPerDay) :
 ….
 …. Lines of code that calculate, in terms of parameters, cost of trip
 ….
 return tripCost, gasCost, foodCost, numLunches, numHotelNights

To the user of function, it’s a “black box.” User sends in values, sees
printed answer!

tripCostData

 OUTPUT
tripCost
.
.
numHotelNights

INPUT

distanceKM
vehSpeedMPS

.

.

.
dinnerCostPerDay

HW1: function tripCostData
def tripCostData(distanceKM, vehSpeedMPS, vehKPL, gasCostPerLiter , hotelCostPerNight,
 breakfastCostPerDay, lunchCostPerDay, dinnerCostPerDay) :
 totalCost = 0
 # compute length of trip in hours
 hours = …
 # compute liters of gas needed
 litersNeeded = …
 # compute gas cost
 gasCost = …

 # compute number of nights (hotel stays) needed
 nights = … This should be an integer!
 # perhaps compute a number (0.0->1) representing fraction of final day
 lastDayFraction = …

 # compute breakfast, lunch, and dinner costs
 breakfastCost = …
 # (lunchCost might involve more than one line and an if statement)
 dinnerCost = …

 # sum costs
 totalCost = …

 # return results
 return totalCost, gasCost, …

HW1: compareVehiclesForTrip
def compareVehiclesForTrip(…) :
 # assign some new variables values based on converting units in input
 …

 # make two calls to tripCostInfo
 veh1Cost, gasCost1, veh1Nights, veh1Lunches, veh1FoodCost = tripCostData(...)
 veh2Cost, gasCost2, veh2Nights, veh2Lunches, veh2FoodCost = tripCostData(…)

 # compare results and print information and recommendation
 if (…):
 print(…)
 ..
 else:
 print(…)
 ..

 return # nothing needs to be returned

HW1 Q3 & Q4 - test functions?
• “Write function testQ1() that makes at least five calls to tripCostData(...) with different arguments."
• Students email me – ”what’s this, dude????”
• You should get in the habit of writing functions that you use to test your code as you are debugging

it.
– When you wrote tripCostInfo, you probably (I hope!) test it by trying

>>> tripCostData(....)
multiple times with different values in the interpreter. But that can get tedious, especially for larger, more
complicated program.

It can be better to "package up" the tests, so you can easily run them.

–
def testQ1():
 tripCostData(....)
 tripCostData(... different arguments...)
 tripCostData(… different arguments...)

 Then, every time you change tripCostInfo, you just run testTripCost and examine the output version what it
should be.

• It’s important that you choose the arguments of your tests carefully! Think about what sets of
argument test the variety of situations that the function should handle

• Similarly, for testP2:
– def testP2():

compareVehiclesForTrip(…) NOTE: unlike for testP1(), no print(…)
compareVehiclesForTrip(…) needed around compareVehiclesForTrip()
compareVehiclesForTrip(…) because compareVehiclesForTrip already
 prints information (rather than returning it)

NOTE: Something is not right here! What?
tripCostData doesn’t print anything so
testQ1() will run but show you nothing
FIX? Use print(tripCostData(…))

HW1 Q3 & Q4 - test functions
• It’s important that you choose the arguments of your tests carefully!

Think about what sets of argument test the variety of situations that
the function should handle

• def testQ1()
print(tripCostData(100.0, 100.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0))
print(tripCostData(200.0, 100.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0))
…

• from random import random
 def testP1()

print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))
print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))
print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))
print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))
print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))

Not effective for testing!!
 - for the random case, would you know the expected
results? It’s not a good test if you don’t know expected results
to compare to actual results

 A few words on debugging and testing
• For beginning programmers, I’m not a big advocate of

using “real” debuggers (the tools that come with IDEs
like Wing and even IDLE).

• I’m a fan of reading code carefully and critically and
– Using a lot of carefully placed print statements – print early,

print often - see where things go wrong!
• in HW1, if printed final results don’t seem right, print out all your

intermediate variables. Most people have variables for, e.g.
driving time, gas needed, gas cost, hotel nights needed, etc. –
print them all!

• I am also a fan of “baby steps”: as I said earlier, write a
little bit of code, then test, then a little more, and test
again, etc. Small changes to a so-far-working program
makes errors much easier to find.

• More to say on this later …

Next time
• Finish conditional execution part of Chapter 7
– nested conditionals, if-elif-else

• start iteration (the last of the five key
programming components). Read Ch 8 (it refers
back to introduction to ”for” in 4.4 but you don’t
really need to look at 4.4)

