
CS2110 Lecture 4 Feb. 1, 2021
• DS Assignment 1 due tomorrow afternoon
• HW 1 due Thursday

– Meet specifications precisely.
• Functions only (except “import math” also okay)

• NO user interaction – do not use ‘input’ function.
• Function names and parameter names must match specification exactly, including case

• Use a file editor! Don’t type functions/long sections of code directly into Python
interpreter. Keep the code you’re working with in a .py file. Use “Run Module” (or
similar, depending on IDE) to “send” that code to interpreter. Test your code in
interpreter by calling functions defined by your .py file. Then modify code/fix errors in
editor, send modified code back to interpreter, test again, etc. - editor < - > interpreter
until correct.

• Q3 and Q4 are important. It is critical for you to learn skill of testing your code
thoroughly on carefully considered set of cases that attempt to cover all legal input
situations.

– First homework assignment can be difficult for students completely new to programming.
Read the book, practice, think … it will make sense if you work at it.

Last time
Chapter 2
• Expressions
• Variables and assignment statements
• Strings and expressions

(last time) Variables and Assignment Statements
Expressions yield values and we often want to give names to
those values so we can use them in further calculations. A
variable is a name associated with a value.

The statement
>>> x = 10
>>>
creates the variable x and associates it with value 10.
‘x = 10’ is a statement not an expression. It doesn’t produce
a value. Instead, it associates x with the value 10 and
subsequently x can be used in expressions!
>>> x + 3
13

(last time) Variables and Assignment Statements

In general, you write:
>>> var_name = expression
where var_name is a legal variable name (see book/Python reference)
and expression is any expression

>>> zxy1213 = 14.3 + (3 * math.sin(math.pi/2))
>>> zxy1213
17.3

And since zxy1213 is a variable, thus a legal expression, we can write:
>>> sillyVarName = zxy1213 – 1.0
>>> sillyVarName
16.3

(last time) Variables and Assignment Statements

Only a single variable name can appear on to the left
of an = sign (unlike for ==, the equality “question”)

>>> x + 3 = 4 X (crashes, yields syntax error.)
>>> x + 3 == 4 OK (will return True or False, or give
 error if x has not been assigned a value)

(last time) Variables and Assignment Statements

>>> x = 3
>>> y = 4 * x
>>> result = x + y

x

y

result

3

12

15

(last time) Variables and Assignment Statements

>>> x = 3
>>> y = 4 * x
>>> result = x + y

x

y

result

3

12

15

Rule (very important to remember):
1) Evaluate right hand side (ignore

left for a moment!) yielding a
value (no variable involved in
result)

2) Associate variable name on left
hand side with resulting value

>>> x = 100
>>> y
>>> ?
>>>result
>>> ?

100

y and result are not changed!
Don’t think of assignments as constraints or lasting
algebraic equalities. They make (perhaps temporary)
associations between names and values.

Today
• Ch 5.3: math functions from the math module
• Chapter 6
– Function calls
– Composition
– Defining functions <- super important!
– Flow of execution
– Parameters and arguments

• HW1 details/hints

Ch 5.3: Math functions
I’ve mentioned that Python has many libraries of useful functions
(and sometimes special values). They’re called modules. The
functions in these modules are not part of basic Python. Usually, to
get access, you use the import statement to load functions from a
module into Python. We’ll cover this in more detail later, but you
should know about one key module: math (and you probably want to
include “import math” in your HW1 Python file)

>>> sqrt(4) error – not defined in basic Python
>>> import math
>>> math.sqrt(4)
2.0
>>> math.pi
3.141592653589793
>>> math.sin(math.pi/2)
1.0

Ch 6: Function calls
In general:
>>> fn_name(arg1, arg2, …, argN)
returned_value

We say a function takes N argument values and returns a
computed value, returned_value
(note: some functions, notably print, don’t return anything other than
special Python value None! Printing is not the same as returning a value. I
will say more on this later…)

>>> abs(-3) ! function call
3 ! value returned from function call
>>> min(17, 4) ! function call
4 ! value returned

Ch 6: Function calls

When arguments to function calls are expressions (very common),
evaluate expressions first:

Presume variable a has value 23, b has value -3

>>> max(a, 14, b+12)

is evaluated by passing 23, 14, and 9 to the max function, yielding

23

In no sense are the variables a and b given to the function. Again, each
argument expression is evaluated to produce a value, and those values
are passed to the function.

Ch 6: Function composition
Get used to and do not be afraid to compose, or nest,
function calls!
Just like in math, f(g(h(x),i(y)), j(z)) is perfectly legal,
sensible, and normal.

>>> math.log(abs(math.sin(-math.pi / 2.0)))

Evaluate from inside out:
 -math.pi / 2.0 -> -1.5707963267948966
 math.sin(-1.5707963267948966) -> -1.0
 abs(-1.0) -> 1.0
 math.log(1.0) -> 0.0

Ch 6: Defining New Functions
Super important to understand this! (You will do a lot of
this in this course!)

Again, a function call, f(a,b,c) is an expression with a
value, just like other Python expressions. Like in math, a
function takes some “input” arguments, computes
something, and returns an answer (though sometimes
that answer is special Python value None)

def enables you to define your own functions

Ch 6: Defining New Functions
def functionName (param1, param2, …, paramN):
 ….
 …. (body of function, can be many lines,
 …. computes result value in terms of parameter
 …. variables bound to input values)
 ….
 return result_value

Make sure you understand:
• A primary use of functions is to define a general computation:

– Compute square root of any (non-neg) number
– Compute min of any pair of numbers, etc.
– Convert any temperature in Celsius to temperature in Fahrenheit

• If you don’t include a return statement, function returns special value None
• Function body/computation specified in terms of parameter variables (param1, …, paramN). The parameter variables will be bound to argument

values when the function is called (not at function definition time)

Ch6: Defining functions
def myMin (a,b):
 if (a < b):
 return a
 else:
 return b

>>> myMin(5,7)
5

a, b = 5, 7
if (a < b):
 return a
else:
 return b

 5

think of calling
myMin(5,7) as:

Super important: Parameter variables a and b are
only defined during the execution of myMin

>>> a
ERROR: a not defined

Ch 6: Defining functions

def myMin (a,b):
 if (a < b):
 return a
 else:
 return b

>> x, y = 12, 10
>> myMin(x,y)

a, b = 12, 10
if (a < b):
 return a
else:
 return b

myMin(12,10)

>> 10

Ch 6: Defining New Functions
def foo(a, b, c):
 temp = a * b
 result = temp + c
 return result
 IMPORTANT
When executing a function call:
 1) first, the function’s parameter variables are bound to the values of
the function call’s arguments
 2) second, the body of the function is executed

>>> x = 3
>>> foo(x * x, x + 1, 3) ! foo will be executed with variable
 a bound to 9
 b bound to 4
 c bound to 3
 foo “knows” nothing about x. x *isn’t*
 passed in. 9, 4, and 3 are passed into foo.

”Receiving” and saving and using the
result of a function call

• You can directly use the value returned by a
function
>>> print(3 + foo(2,3,4))

• Often, though, you want to save it in a
variable for use in other parts of your
program
>>> fooResult = foo(2,3,4)
…..
>>> print(17 + fooResult)

It is not usually effective to have a function call
by itself as a line of your code

>>> def foo(a, b, c):
 temp = a * b
 fooResult = temp + c
 return fooResult

>>> result = 0
>>> foo(2,3,4)
10
>>> print(result + 1)
1
>>> a
Error
>>> fooResult
Error

>>> result = 0
>>> fooResult = foo(2,3,4)
>>> print(fooResult + 1)
11

Super important: parameter variables a, b, c and foo’s ”local” variable temp
and fooResult have no value except during the computation of foo(2,3,4). They
are not accessible outside of foo.

Maybe the prior version is easy to understand
but what about this one?

>>> def foo(a, b, c):
 temp = a * b
 result = temp + c
 return result
>>> result = 0
>>> foo(2,3,4)
10
>>> print(result + 1)
1

>>> result = 0
>>> result = foo(2,3,4)
>>> print(result + 1)
11

We will talk more about this next time BUT it is super important to realize that the result
variable inside foo is a different variable and unconnected to the variable result used
outside foo at the command prompt. When foo(2,3,4) is executing, a separate result
variable is created temporarily. Think of it as resultfoo. When foo completes its
computation, it returns the resultfoo‘s value. We can think of the other result variable as
resultglobal . foo modifies its local result variable (resultfoo) not the global one, so if we
don’t save the returned value, the call foo(2,3,4) has no effect computation (other than
using some computer time)

Functions can return multiple values
def minAndMax(a, b, c):
 minVal = min(a,b,c)
 maxVal = max(a,b,c)
 return minVal, maxVal

minAndMax will return two values. To “receive” and save them, use
parallel assignment:
 >>> minResult, maxResult = minAndMax(17, 3, 5)
 >>> minResult
 3
 >>> maxResult
 5
USE THIS STYLE WHEN YOU CALL tripCostData in HW1

HW1: function tripCostData
def tripCostData (distanceKM, vehSpeedMPS, vehKPL, gasCostPerLiter,
hotelCostPerNight, breakfastCostPerDay, lunchCostPerDay,
dinnerCostPerDay) :
 ….
 …. Lines of code that calculate, in terms of parameters, cost of trip
 ….
 return tripCost, gasCost, foodCost, numLunches, numHotelNights

To the user of function, it’s a “black box.” User sends in values, sees
printed answer!

tripCostData

 OUTPUT
tripCost
.
.
numHotelNights

INPUT

distanceKM
vehSpeedMPS

.

.

.
dinnerCostPerDay

HW1: function tripCostInfo
def tripCostInfo(distanceKM, vehSpeedMPS, vehKPL, gasCostPerLiter , hotelCostPerNight,
 breakfastCostPerDay, lunchCostPerDay, dinnerCostPerDay) :
 totalCost = 0
 # compute length of trip in hours
 hours = …
 # compute liters of gas needed
 litersNeeded = …
 # compute gas cost
 gasCost = …

 # compute number of nights (hotel stays) needed
 nights = … This should be an integer!
 # perhaps compute a number (0.0->1) representing fraction of final day
 lastDayFraction = …

 # compute breakfast, lunch, and dinner costs
 breakfastCost = …
 # (lunchCost might involve more than one line and an if statement)
 dinnerCost = …

 # sum costs
 totalCost = …

 # return results
 return totalCost, gasCost, …

HW1: compareVehiclesForTrip
def compareVehiclesForTrip(…) :
 # assign some new variables values based on converting units in input
 …

 # make two calls to tripCostInfo
 veh1Cost, gasCost1, veh1Nights, veh1Lunches, veh1FoodCost = tripCostData(...)
 veh2Cost, gasCost2, veh2Nights, veh2Lunches, veh2FoodCost = tripCostData(…)

 # compare results and print information and recommendation
 if (…):
 print(…)
 ..
 else:
 print(…)
 ..

 return # nothing needs to be returned

HW1 Q3 & Q4 - test functions?
• “Write function testQ1() that makes at least five calls to tripCostData(...) with different arguments."
• Students email me – ”what’s this, dude????”
• You should get in the habit of writing functions that you use to test your code as you are debugging

it.
– When you wrote tripCostData, you probably (I hope!) test it by trying

>>> tripCostData(....)
multiple times with different values in the interpreter. But that can get tedious, especially for larger, more
complicated program.

It can be better to "package up" the tests, so you can easily run them.

–
def testQ1():
 tripCostData(....)
 tripCostData(... different arguments...)
 tripCostData(… different arguments...)

 Then, every time you change tripCostData, you just run testTripCost and examine the output version what it
should be.

• It’s important that you choose the arguments of your tests carefully! Think about what sets of
argument test the variety of situations that the function should handle

• Similarly, for testP2:
– def testP2():

compareVehiclesForTrip(…) NOTE: unlike for testP1(), no print(…)
compareVehiclesForTrip(…) needed around compareVehiclesForTrip()
compareVehiclesForTrip(…) because compareVehiclesForTrip already
 prints information (rather than returning it)

NOTE: Something is not right here! What?
tripCostData doesn’t print anything so
testQ1() will run but show you nothing
FIX? Use print(tripCostData(…))

HW1 Q3 & Q4 - test functions
• It’s important that you choose the arguments of your tests carefully!

Think about what sets of argument test the variety of situations that
the function should handle

• def testQ1()
print(tripCostData(100.0, 100.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0))
Print(tripCostData(200.0, 100.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0))
…

• from random import random
 def testP1()

print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))
print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))
print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))
print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))
print(tripCostData(random(),random(),random(),random(),random(),random(), random(), random()))

Not effective for testing!!
 - for the random case, would you know the expected
results? It’s not a good test if you don’t know expected
results to compare to actual results

Ch 6: More on functions
Variables and parameters are local
print vs return
• super important to know the difference and to pay attention to when homework

assignments and exam specify whether to print or return things. E.g. Do NOT print
values when we say your function should return something.

Ch 7: Conditional execution

Next time

Logical/Boolean expressions
Conditional execution - if/elif/else

HW1 Help
Use of math.ceil
Convenient printing using String format

