
CS2110 Spring 2021 DS10 
Topic: caching

• A very useful tool in many programming situations, and especially 
in programs that access web services 

• Basic idea: save results of things you’ve already computed 
(especially things that take a while to computer or retrieve from 
the internet) so that if you need them again later, you don’t have 
to re-compute 

• One example: 
– Earlier this semester, demonstrated basic recursive code to Fibonacci 

sequence: 1, 1, 2, 3, 5, 8, 13, … 
– Works okay on most people’s computers up to high 30s but takes too 

long on say fib(50) 
– Why is it so slow? Basic process is simple – adding two smaller values.  

But the particular implementation unnecessarily recomputes values 
many times and ends up being enormously inefficient.  For example, to 
compute fib(8), the code first compute fib(6) and then it computes 
fib(7). But to compute fib(7) it completely recomputes fib(6)!  We can 
easily avoid this. 

– See fib and fib2 in fibCache.py



Example of using caching in web applications: lowering the 
number of calls to Google’s geocoding service

• Many web APIs, especially free/basic versions, have limits 
on the number of queries you can make before paying, and 
often also limit the rate at which you can make queries.   
– E.g. 600 queries per day and/or 15 queries per second.  

• Google’s geocoding service, used by the geocodeAddress 
function of  HW10 and HW11, limits both the number and 
rate at which you can make queries. We probably won’t 
exceed those quotas but using caching in geocodeAddress 
provides a good example (and likely will make some parts of 
your program faster).  You are not required to add caching 
to your HW10 or 11 code but you may if you wish.



1. Add your API key (or Prof. Cremer’s, provided in ICON 
assignment item on ICON) at line 9 of geocodeonly.py. 

2. Load geocodeonly.py into Python. The file contains  
– geocodeAddress 
– testGeocode, a function that takes an integer, numLoops, as 

argument (default value 1) and makes 10*numLoops 
geocodeAddress calls. 

3. Run testGeocode().  You will see some lat/lng pairs for 
the ten city locations queried in testGeocode.  

4. testGeocode takes a number of iterations as input (1 is 
the default).  If we gave a larger number as input – e.g. 
testGeocode(100) - and if the Python calls to the 
Google API were fast enough, we might eventually 
exceed our quota or the API rate limit (unless we 
upgraded our account and paid Google.)



Using caching in geocodeAddress
IDEA: because our HW10 and 11 programs might make many geocode 
queries involving the same address, let’s save results from Google 
geocoding service locally, so we don’t waste quota asking Google things 
we’ve already asked. Where should we save geocode information? 

• Use a dictionary (call it geoDict) where each entry has an address as 
key and a lat/lng tuple as value. E.g.  

       {'iowa city': (41.6611277, -91.5301683), 'new york': (40.7127837, -74.0059413)} 

• We’ll then modify geocodeAddress in two ways:  
– Before making a request to Google’s service, check if we have an entry for the 

address in geoDict.  E.g. check geoDict[‘Iowa City’]. 
– If so, return it! (don’t bother Google) 
– If not, ask Google.  But now, before returning the result, save it in geoDict so 

that next time we want to know about this address we won’t ask Google again.



Code implementing the use of the cache
• add top-level line that creates and initializes a global variable 

geoDict = {} 

• add to geocodeAddress 
– at very beginning: 

 if addressString in geoDict: 
  return geoDict[addressString] 

– at end, just before return line: 

  geoDict[addressString] = result 

Now load file into Python and test! 



Example test transcript
>>> geoDict 
{} 
>>> geocodeAddress('iowa city') 
(41.6611277, -91.5301683) 
>>> geoDict 
{'iowa city': (41.6611277, -91.5301683)} 
>>> geocodeAddress('new york') 
(40.7127837, -74.0059413) 
>>> geoDict 
{'iowa city': (41.6611277, -91.5301683), 'new york': (40.7127837, 
-74.0059413)} 

You can see your little local geocode information ‘cache’ growing – 
you won’t need to ask Google for Iowa City or New York’s lat/lng 
again!



Try testGeocode again
Now try test testGeocode() function again: 

1) run testGeocode(1).  You should see city names and 
associated lat/lng pairs printing fairly slowly, one or two per 
second perhaps. 

2) ”look” at geoDict in the shell 
>>> geoDict 
 You should see a dictionary full of location : lat/lng pairs 

3)  run testGeocode(5).  The cities and lat/lng pairs should print 
very quickly this time.  geocodeAddress never needs to 
actually make a request to Google.  

After the first geocode request for each location, all the rest are 
repeats so we don’t ask Google again; we just get the answer 
directly from geoDict



BUT WAIT! What if we stop/close Python? We’d need to rebuild the 
dictionary next time we run the program. Can we easily save the 
dictionary in a file and reload it next time we want to run the program? 
YES! 

So far, we can cache geocode query results in a dictionary and use them 
to avoid calls to Google’s service.  But we want to keep the results 
“permanently.”  How can we save the dictionary to a file before quitting 
Python? 
• Python provides JSON tools that convert dictionaries to JSON, which 

we can then easily save to a file and also easily read back in! 

• Copy the two functions readGeoDict and saveGeoDict from 
readSaveGeoDict.py into your geocodeonly.py file (yes, it would 
work to import the file but do NOT do so for DS10.) 

TEST AGAIN!



Test saving/reading geoDict
1. load geocodeonly.py (with the 2 new functions) 
2. Execute testGeocode() in the Python interpreter 
3. Execute saveGeoDict() 
4. Close Python 
5. Look in whichever folder you’ve been working in. You should see a 

file called geodict.json 
6. View it with a text editor. It should look like a Python dictionary. 
7. Load geocodeonly.py into a new Python. 
8. Execute readGeoDict() 
9. Type geoDict at the Python prompt. You should see that geoDict is a 

dictionary filled with the data from the saved file. (And if you try 
testGeocode() now, it will execute quickly because it doesn’t have to 
talk at all to Google.) 

Submit the revised geocodeonly.py to the DS10 assignment on ICON



Optional (do later): add geocode caching to HW10 and/or HW11

1. add call to readGeoDict when you initialize HW10 and HW11 
execution. E.g. add readGeoDict() somewhere in your initialization 
code. 

2. replace original geocodeAddress with today’s new one  
3. Add a line after initializing tkinter: 

 Globals.rootWindow = tkinter.Tk() 
  Globals.rootWindow.protocol(“WM_DELETE_WINDOW”, handleCloseRootWindow) <— NEW 

4. Add function that calls saveGeoDict when tkinter main window is 
closed. 

def handleCloseRootWindow(): 
   rootWindow.destroy() 
   saveGeoDict()


