Project Jupyter: Computational Narratives as the Engine of Collaborative Data Science

07 JULY 2015

CS4400: Database Systems
Parallel performance
Brandon Myers
Scalability scenario #4

• *MedReport* is doing so well that you hire an analyst whose job is to use the crowdsourced data to discover previously unknown side effects for every medication.

• They collect all the user reports to one server and write a SQL query to answer the question. Unfortunately, they find it will take 5 weeks to run. By then the data will be out of date.

• What do you do?
Parallelism for a single query

Think of motivation in one of two equivalent ways

a) Lower latency to run the query on a whole dataset
b) Higher throughput in terms of records or documents processed per second
Vocabulary

• Parallel computing

• Concurrency
Parallelism for a single query

Think of motivation in one of two equivalent ways

a) Lower latency to run the query on a whole dataset
b) Higher throughput in terms of records or documents processed per second
Metric for performance comparison: Time

My program runs in 100 seconds

If I “parallelize it” on 10 processors I saw that it runs in 12 seconds

What is the speedup?

\[
\frac{T_{\text{serial}}}{T_{\text{parallel}}} = \frac{100}{12} = 8.33X
\]
Predicting parallel running time (T_{par}) from serial running time

My program runs in $T_{ser} = 100$ seconds

If I “parallelize it” on 10 processors, how fast will it run (i.e., what is T_{par})?

$$T_{improved} = T_{original} \times ((1 - r) \times 1 + r \times \frac{1}{s})$$

r = fraction of program that is able to be improved
s = speedup when applying the improvement

In this form, it is called **Amdahl’s law**: says your speedup is limited by how much of the program is improved (e.g., parallelize)
Amdahl’s law applied to parallelization

https://en.wikipedia.org/wiki/Amdahl%27s_law#/media/File:AmdahlsLaw.svg
What is the speedup of P processors over 1 processor in this query? (derived from last meeting)
Analyzing parallel algorithms

- Sometimes the speedup of the parallel portion is not just a linear function of the serial version.
- To calculate $T_{parallel}$ when there is communication between processors, we don’t necessarily know r and there might even be other terms for parts of program sped up by different amounts.

$$T_{improved} = T_{original} * ((1 - r_1 - r_2) * 1 + r_1 * 1/s_1 + r_2 * 1/s_2)$$

- How do we more precisely analyze a parallel algorithm to find running time?

- Abstract machine models
One of the foundational parallel machine models: Parallel Random Access Machine (PRAM)

- All processors are attached to a shared memory
- Memory access takes 1 step
- More realistic variants of PRAM incur greater cost for “conflicting” memory accesses
- used very often for understanding the speedup limits of parallel algorithms; not very realistic
Quick background: A sequential abstract machine model you already know

- RAM: random access memory
- just like any other computational step, accessing memory is cost of 1
Candidate Type Architecture (CTA)

• Observation: accessing different parts of memory has different latencies (more realistic than PRAM)
• local memory: 1 step, remote memory $\lambda >> 1$
• λ depends on the machine, so its value may change what the best algorithm is

$\text{RAM} = \text{sequential processor} + \text{memory}$
One of the foundational parallel machine models: Bulk synchronous parallel (BSP)

this abstract machine does not support as many algorithms as CTA, but it is simpler

(see blackboard notes)
Summary

• speedup is \(\frac{T_{\text{serial}}}{T_{\text{parallel}}} \)

• speedup is limited by the fraction of the program that is parallelizable (in general, improveable)

• for more precise analysis of parallel programs, which involve nontrivial communication, we use an abstract machine model to analyze a parallel program

• BSP is a simple yet practical model
 • it is a common algorithmic framework used for parallel database operations
Administrivia

• HW8 - parallel query processing in Spark/Zepplin
 • intended to just get your feet wet
 • will work on the assignment in class on Monday

• Next Friday: review for the final