CS4400: Database Systems
Homework 4
Cost of DB operations and
Relational calculus/datalog
Due October 6, 2016, 11:59pm

Instructions: Upload your submission as a PDF file on ICON under Assignments > Homework 4.

Goals for this assignment
 > Get practice estimating the output size and cost of relational database operations and plans
 > Understand the connection between logic and relational queries

1. (2 points) “Database systems” Garcia-Molina, Ullman, Widom
 Ex 16.4.1 (d) and (i), keeping in mind the that when we are only given T and V, we’ll assume the distribution of values in a particular column is uniform.

2. (4 points) Consider two relations R and S with the following statistics collected by the DBMS.
 R(a, b)
 V(R, a) = 50
 histogram for R.a
<table>
<thead>
<tr>
<th>Value</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>[1-2]</td>
<td>100</td>
</tr>
<tr>
<td>[3-7]</td>
<td>100</td>
</tr>
<tr>
<td>Other</td>
<td>100</td>
</tr>
</tbody>
</table>

 S(a, c)
 V(S, a) = 20
 histogram for S.a
<table>
<thead>
<tr>
<th>Value</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>other</td>
<td>200</td>
</tr>
</tbody>
</table>
Provide the best estimate you can for $T(R \bowtie S)$. (useful materials: lecture 10 or ch16.4)

3. (6 points) This problem is modified from “Database Systems” Garcia-Molina, Ullman, Widom, Ex 16.5.6

Suppose we wish to compute the expression
$\tau_b(R(a, b) \bowtie S(b, c))$, that is, we join R and S on column b and then sort by column b.

Assume the following properties of plans explored by the optimizer
i. Join can be implemented with either a) two-pass merge sort on each relation followed by merge join (15.4.1 or lecture) or b) two-pass hash-join (15.5.5-7 or lecture)
ii. Any relation or result of an expression can be sorted by merge sort
iii. The result of a join can be passed to the next operator without being written temporarily to disk
iv. The result of a sort can be passed to the next operator without being written temporarily to disk
v. $B(R) = 1000$, $B(S) = 500$, $B(R \bowtie S) = 5000$

Assume that $1000 < M < 5000$ (M is the number of blocks that can fit in memory at one time).

What subexpressions would a Selinger-style optimizer consider, and what is the cost (in terms of number of disk I/Os required) for each of those subexpressions? Show the costs both symbolically and numerically.

Reminders:
- The number of memory blocks is important because it tells you which version of an algorithm you can use.
- Be careful not to over count the number of disk I/Os across an entire plan. You should only count an I/O when a block is read from disk or written to disk.
- Sort-merge join treats both relations the same, but hash join uses one relation for building the hash table and one relation for probing.

Problems 4-7: Consider the following relational schema:

Employee(eid, name, office)
Manager(eid, mid)

Each employee has a unique key, eid. The eid and mid in Manager are foreign keys referencing eid in Employee.
For each query below, write the query in a) relational calculus, b) datalog+negation, and c) relational algebra.

Assume that the datalog queries are executed with set semantics and the relational algebra queries are executed with bag semantics.

(optional) To check your work, you might want to run your SQL queries in sqlite, and your datalog queries in DLV (http://www.dbai.tuwien.ac.at/proj/dlv/)

4. (2 points) Write a query that retrieves all employees that have two or more managers. Your query should return the eid's and the names.

5. (2 points) An independent employee is an employee without a manager. (For example, the CEO is independent.) Write a query that retrieves all independent employees; you should return their eid and their names.

6. (2 points) Retrieve the office of all managers of the employee called 'Alice'. If there are multiple employees called Alice, or if one of them has several managers, you have to return all their offices.

7. (2 points) Find all managers for which all the employees they manage share the same office. Your query should return their eid, their name, and the office where all their managed people are located.

Acknowledgements
questions 4-7 derived from UW CSE344 fall 2015