CS2630 Computer Organization

Lab 3: Syscalls, I/O, and structs in MIPS

Learning objectives

• Predict what a program with a syscall does
• Write an assembly program using a syscall
• Predict what a program that accesses the data segment does
• Write an assembly program that uses the data segment
• Translate a program that uses a struct
• Interpret an assembly program that uses a linked structure

Submission
Submit only:

• Answers to two discussion posts in Part 3
• the following files on ICON to the dropbox for "Lab 3: Syscalls, I/O, structs in MIPS"
 o part2b1.s
 o part2b2.s

Part 1: Syscalls

System calls, or syscalls, are procedures provided by the operating system to do tasks like process input/output and allocate memory.

 a. Predicting the behavior of syscalls

Read about the syscalls in MARS (https://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html or in MARS under Help | MIPS | Syscalls), specifically the introduction, how to use..., Example, and understanding what the Table of Available Services means.

Using the documentation, for each of the following programs, write what you expect the behavior will be. You should not run the program yet.

1.
li $v0, 1
li $a0, 5
syscall

2.
li $v0, 5
syscall
addu $a0, $v0, $zero
li $v0, 1
syscall
3. Run the 1st program in MARS and observe the behavior. If your prediction differs, say why.

2. Run the 2nd program in MARS and observe the behavior. If your prediction differs, say why.

3. Run the 3rd program in MARS and observe the behavior. If your prediction differs, say why.

Part 2: Incorporating the data segment

a. Defining and manipulating data in the data segment

You have two options for completing this section.

Option 1: Read, predict, test

i. Learn about the pseudo-instruction and the .word directive. You can do this by either:
 • read documentation
 • watch the 3rd MARS lesson (https://www.youtube.com/watch?v=wDmmRxpMf5E) on labels, data segment, and text segment

ii. Now, predict what the program listed below program will do.

iii. Run the program in MARS and observe its behavior. Did the behavior match your prediction? If not, why not?

Option 2: Learn by testing
i. Run the program in MARS and observe its behavior. Based on your observations alone, what does the `la` instruction do and what does the `.word` directive do? You may step through the program and look at memory/register values however you like, but do not read documentation about `la` and `.word` to compose your answer.

ii. Read documentation about `la` pseudo-instruction and `.word` directive. Does it match your conclusion?

```
.data
stuff: .word 10 11 12

.text
li $v0, 1
la $s0, stuff
lw $a0, 0($s0)
syscall

addiu $s0, $s0, 8
li $v0, 1
lw $a0, 0($s0)
syscall

addiu $s0, $s0, -4
li $v0, 1
lw $a0, 0($s0)
syscall
```
c. Fun with data

Predict: what will be the result in register $s0 when this program is finished running?

```asm
.text
la $t2, wow
lw $t1, 0($t2)
addiu $t1, $t1, 0xFED
sw $t1, 0($t2)
wow: addiu $s0, $zero, 1
```

Part 3: Representing structs (objects)

Read slides 1-9 from today's Notes to learn about how objects can be represented in memory using the case study of a linked list.

a) Answer to "Peer instruction" on slide 8? Post your answer on
https://uiowa.instructure.com/courses/56016/discussion_topics/336483

Refer to the provided code in listnode.asm
(http://homepage.cs.uiowa.edu/~bdmyers/cs2630_su17/public/lectures/lecture-011/listnode/) for the remaining questions.

Put your answers to b-f in a post on
https://uiowa.instructure.com/courses/56016/discussion_topics/336484

b) What syscall does it use to allocate a new ListNode object?

c) How big is a ListNode object (in number of bytes)? At what offset from the base address of a ListNode object is the data field? At what offset is the next field?

d) Why is an $s__ register written to in this line of the append method? Be more specific than "the value must be saved".

```asm
addu $s0, $zero, $a0       # s0 = this
```

e) After running the program, what at what address is the ListNode 2, ListNode 6, ListNode 3, and ListNode 0 at? (HINT: the answer is not 0x10010000, 0x10010004, 0x10010008, 0x1001000C).

f) Write one question you have about the listnode.asm code.