
CS	2230	
CS	II:	Data	structures

Meeting	29:	Hashing
Brandon	Myers

University	of	Iowa

https://en.wikipedia.org/wiki/Hash_function

Today’s	learning	objectives

• Identify	various	data	structures	to	implement	a	Set
• Calculate	the	memory	usage	of	hashing	data	
structures
• Execute	the	Set	methods	for	various	hash	set	
implementations,	including	when	there	are	
collisions
• Identify	important	properties	of	hash	codes

Roadmap
Propose to represent a set
of integers as an array of
booleans so that we can

search in O(1) time

Wow that's fast! But it has
the problem that it requires

too much memory!

Reduce the size of the
array, but now elements

collide on the same index

Deal with collisions with a
variety of methods

("chaining, probing")

Represent sets of any
object by using a hash

function to turn the object
into an integer

What	are	ways	we	can	represent	a	
Set	of	integers?

10
14

21

2

4

7

https://b.socrative.com/login/student/
room	CS2230X	ids	1000-2999
room	CS2230Y	ids	3000+

Identify	various	data	structures	to	implement	a	Set

Data	structure how	to	search	for	a	specific	
value

if	you	know	where	it	is	
stored	(e.g.,	index	or	
reference)

unsorted	array	of	integers search	from	start	until	we	
find	it

go	to	the index

10 14 4 15 7 21
10 14 4 15 7 21

find(4)

10 14 4 15 7

0 1 2 3 4

21

5

get(2)

Data	structure how	to	search	for	a	specific	
value

if	you	know	where	it	is	
stored	(e.g.,	index	or	
reference)

unsorted	array	of	integers search	from	start	until	we	
find	it

go	to	the index

sorted	array	of	integers binary	search go	to	the	index

10 14 4 15 7 21

4 7 10 14 15 21

10 14 4 15 7 21

find(4)

10 14 4 15 7

0 1 2 3 4

21

5

get(2)

4 7 10 14 15

0 1 2 3 4

21

5

find(7)

4 7 10 14 15

0 1 2 3 4

21

5

get(1)

Data	structure how	to	search	for	a	specific	
value

if	you	know	where	it	is	
stored	(e.g.,	index	or	
reference)

unsorted	array	of	integers search	from	start	until	we	
find	it

go	to	the index

sorted	array	of	integers binary	search go	to	the	index

binary	search	tree	of	integers search	from	root go	to	the	node

10 14 4 15 7 21

4 7 10 14 15 21

6

3

42

6

3

42

10 14 4 15 7 21

find(4)

10 14 4 15 7

0 1 2 3 4

21

5

get(2)

4 7 10 14 15

0 1 2 3 4

21

5

find(7)

4 7 10 14 15

0 1 2 3 4

21

5

get(1)

6

3

42

find(4)

Data	structure how	to	search	for	a	specific	
value

if	you	know	where	it	is	
stored	(e.g.,	index	or	
reference)

unsorted	array	of	integers search	from	start	until	we	
find	it

go	to	the index

sorted	array	of	integers binary	search go	to	the	index

binary	search	tree	of	integers search	from	root go	to	the	node

huge	array of	booleans (true	
means	the	value	is	in	the	set)

use the	value	as	an	index same	as	search	

10 14 4 15 7 21

4 7 10 14 15 21

6

3

42

6

3

42

10 14 4 15 7 21

find(4)

10 14 4 15 7

0 1 2 3 4

21

5

get(2)

4 7 10 14 15

0 1 2 3 4

21

5

find(7)

4 7 10 14 15

0 1 2 3 4

21

5

get(1)

6

3

42

find(4)

F T T F ... F

0 1 3 Integer.
MAX_VALUE

find(3)

2

F T T F ... F

0 1 3 Integer.
MAX_VALUE

find(3)

2

F T T F ... F

0 1 3 Integer.
MAX_VALUE

2

This	data	structure	is	great!	Find	any	value	in	O(1)	time!

Problems?

boolean[] set = new boolean[Integer.MAX_INT+1];
set[1] = true; // add 1
set[2] = true; // add 2

F T T F ... F

0 1 3 Integer.
MAX_VALUE

find(3)

2

Calculate	the	memory	usage	of	hashing	data	structures

Let	𝑀(𝑛)	be	the	amount	of	memory this	Set	uses,	where
𝑛=number	of	elements	in	the	Set.	Which	is	true	and	the	
best	bound?

a) 𝑀 𝑛 ∈ 𝑂(1)
b) 𝑀 𝑛 ∈ 𝑂(𝑙𝑜𝑔𝑛)
c) 𝑀 𝑛 ∈ 𝑂(𝑛)
d) 𝑀 𝑛 ∈ 𝑂(𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝐴𝑋_𝐼𝑁𝑇)
e) 𝑀 𝑛 ∈ 𝑂(𝑛 ∗ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟.𝑀𝐴𝑋_𝐼𝑁𝑇)

F T T F ... F

0 1 3 Integer.
MAX_VALUE

2

https://b.socrative.com/login/student/
room	CS2230X	ids	1000-2999
room	CS2230Y	ids	3000+

For	example...

Integer.MAX_VALUE= 2>? − 1
boolean data	type	is	1	to	2	bytes

231-1	*	2	bytes	=	~4GB	even	if	your	set	is	nearly	empty!

If	you	are	clever	and	represent	the	boolean as	1	bit	each	(0=false,	
1=true)	then	you	can	get	down	to	268MB

Even	if	268MB	fits	in	your	computer’s	RAM,	reality	bites	you:	if	
your	elements	are	uniformly	randomly	distributed	across	those	
268MB	then	the	elements	of	your	set	won’t	all	be	in	your	
computer’s	fast	cache	memory,	which	has	a	capacity	in	the	100s	of	
KB	(take	CS:2630	to	learn	more!)

F T T F ... F

0 1 3 Integer.
MAX_VALUE

2

F F F F F F

0 1 32 4 5

Fixing	the	memory	problem
Limit	the	array	to	a	smaller	capacity,	say	6

add(2)

F F T F F F

0 1 32 4 5
add(7)

F T T F F F

0 1 32 4 5

how	to	add(𝑖):	mark	true
at	index	𝑖	𝑚𝑜𝑑	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

(bonus:	we	can	also	store	
negative	integers	now)

a	new	problem!	It	looks	like	
1	is	in	the	set	(and	
13,19,25,	...)	even	though	
we	only	added	7

F F T F F F

0 1 32 4 5
add(7)

F T T F F F

0 1 32 4 5

a	new	problem!	It	looks	like	
1	is	in	the	set	(and	
14,21,28,	...)	even	though	
we	only	added	7

Since	many	values	(1,7,13,19,25,...)	map	to	index	1,	we	
need	to	keep	track	of	which key	is	stored	there

null 7 2 null null null

0 1 32 4 5

We’ll	have	the	array	store	Integers,	where	null	means	the	bucket	is	
empty	and	a	non-null	value	is	the	key	stored	there

add(2)

Integer[] set = new Integer[6]; // capacity=6
set[2 % 6] = 2;
set[7 % 6] = 7;

%	means	mod

Execute	the	Set	methods	for	
various	hash	set	
implementations

null null null null null null

0 1 32 4 5

null

6
Suppose	our	set	is	initially	empty	as	above.	What	will	it	look	like	
after	the	following	elements	are	added?	-1,	19,	17,	21,	and	8

21 8 null 17 null 19 -1

-1 19 17 21 8 null null -1 8 17 19 21 null null

null 19 8 21 null 17 -1

a)

c)

b)

d)

https://b.socrative.com/login/student/
room	CS2230X	ids	1000-2999
room	CS2230Y	ids	3000+

Learning	objectives	for	Final	
project	
• Design,	implement,	and	test	an	application	based	
on	a	written	specification
• Choose	appropriate	ADTs	and	efficient	data	
structures	for	various	tasks
• Use	version	control	to	collaborate	on	a	coding	
project	with	another	person

Final	project:	
Semantic	similarity	of	words

3 May. Bistritz.--Left Munich at 8:35 P. M., on 1st May,
arriving at Vienna early next morning; should have arrived at
6:46, but train was an hour late. Buda-Pesth seems a
wonderful place, from the glimpse which I got of it from the
train and the little I could walk through the streets....

3	similar	words	to	“time”? come,	0.6202651310028829
sleep,	0.613304123466795	
time,	0.6082294707042364

I	am	a	sick	man.	I	am	a	spiteful	man.	I	am	an	unattractive	man.	I	believe	my	liver	is	diseased.
However,	I	know	nothing	at	all	about	my	disease,	and	do	not	know	for	certain	what	ails	me.

The	word	“man”	appears	in	the	first	three	sentences.	Its	semantic	descriptor	vector	
would	be:

[I=3,	am=3,	a=2,	sick=1,	man=0,	spiteful=1,	an=1,	unattractive=1,	believe=0,	my=0,	
liver=0,	is=0,	diseased=0,	However=0,	know=0,	nothing=0,	at=0,	all=0,	about=0,	
disease=0,	and=0,	do=0,	not=0,	for=0,	certain=0,	what=0,	ails=0,	me=0]

The	word	“liver”	occurs	in	the	fourth	sentence,	so	its	semantic	descriptor	vector	is:

[I=1,	am=0,	a=0,	sick=0,	man=0,	spiteful=0,	an=0,	unattractive=0,	believe=1,	my=1,	
liver=0,	is=1,	diseased=1,	However=0,	know=0,	nothing=0,	at=0,	all=0,	about=0,	
disease=0,	and=0,	do=0,	not=0,	for=0,	certain=0,	what=0,	ails=0,	me=0]

our	definition	of	semantic	meaning:	the	number	of	times	a	word	appears	with
other	words	in	the	same	sentence.	Each	word	becomes	a	vector.

various	measures	of	similarity	of	two	vectors
cosine	similarity
negative	Euclidean	distance
negative	Euclidean	distance	of	norms

use	these	measures	to	answer	queries	about	the	words	in	a	text

Project	due	dates

• Nov	17,	11:59pm:	Milestone	1	in	GitHub	(no	slip	days)
• Finished	Part	1
• PROGRESS_REPORT_NOV17.txt

• Nov	29,	11:59pm:	Milestone	2	in	GitHub	(no	slip	days)
• Finished	Part	3,	and	initial	draft	of	Part	4's	written	answers
• PROGRESS_REPORT_NOV29.txt

• Dec	6,	11:59pm:	Final	version	in	GitHub	(up	to	2	slip	
days	if	at	least	1	partner	has	them)
• Finished	all	Parts

null 7 2 null null null

0 1 32 4 5

Collisions!

uhoh...

add(13)										//	13	%	6	=	1

You	know	that	feeling...
when	someone	takes	your	parking	spot

null 7 2 null null null

0 1 32 4 5

Dealing	with	collisions

add(13)										//	13	%	6	=	1

null 7 2 13 null null

0 1 32 4 5

null null null null

0 1 32 4 5

7

13 \

2 \

Linear	probing
Go	to	the	next	spot	until	you	find	
an opening

Chaining
Each	bucket	is	a	linked	list	of	
elements	stored	there

...and	other	techniques!

Execute	the	Set	methods	for	various	
hash	set	implementations,	including	
when	there	are	collisions

null null null null null null

0 1 32 4 5

null

6
Suppose	our	set	is	initially	empty	as	above.	What	will	it	look	like	
after	the	following	elements	are	added,	assuming	we	use	linear	
probing?	9,	18,	23,	17

null null 9 null 18 null null

null null 9 23 18 17 null null null 23 17 4 null null

null null 9 18 23 17 null

a)

c)

b)

d)

https://b.socrative.com/login/student/
room	CS2230X	ids	1000-2999
room	CS2230Y	ids	3000+

How	should	we	implement	remove()	if	we	are	using	linear	
probing?	(e.g.,	remove(7))

a) set	the	the	bucket	to	null
b) Remove	the	element	and	move	all	elements	after	it	left	by	

one	space
c) Move	all	elements	after	it	(up	to	the	next	null)	left	by	one	

space
d) leave	a	special	marker	in	the	bucket	that	means	it	is	deleted
e) there	is	no	good	way	to	allow	remove()

null 7 2 13 null null

0 1 32 4 5

https://b.socrative.com/login/student/
room	CS2230X	ids	1000-2999
room	CS2230Y	ids	3000+

Execute	the	Set	methods	for	various	
hash	set	implementations,	including	
when	there	are	collisions

The hash set in your
smartphone’s processor that
you didn’t know about

all	your	data
(e.g.,	running	
programs,	
the	OS,	and	
their	data)

cache	stores	a	
subset	of	your	
data

it	is	small	but	that	
makes	it	fast!

The hash set in your
smartphone’s processor that
you didn’t know about

The	cache	is	basically	a	hash	set
here’s	one	where	each	bucket	can	only	hold	1	key

compare	the	key	with	the	key	in	the	bucket

the	key

hash	function	is	take	
some	of	the	bits	of	the	
memory	address

The hash set in your
smartphone’s processor that
you didn’t know about

here’s	one	where	each	bucket	can	hold	up	to	4	keys

compare	the	key	with	the	keys	in	the	bucket

the	key

hash	function	is	take	
some	of	the	bits	of	the	
memory	address

The	cache	is	basically	a	hash	set

Putting	non-integers	into	a	set
String[] set = new String[capacity];
set[???] = "Cat";

Where	should	we	put	the	string	“Cat”?

Putting	non-integers	into	a	set
String[] set = new String[capacity];
set[???] = "Cat";

Where	should	we	put	the	string	“Cat”?

use	a	hash	function

a	hash	function	is	just	any	function	that	turns	
an	object	into	an	integer

null null null null null null

0 1 32 4 5

null

6
Suppose	the	hash	function	for	a	string	is	the	length

What	is	the	contents	after	inserting	“Cat”,	“Dog”,	“Froggy”?	Assume	we	use	Linear	Probing.

null null null “Cat” “Dog” ”Froggy” nulla)

b)

c)

d)

“Froggy” null null “Cat” “Dog” null null

“Cat” ”Dog” ”Froggy” null null null null

null null null “Cat” “Dog” null “Froggy”

Execute	the	Set	methods	for	various	
hash	set	implementations,	including	
when	there	are	collisions

https://b.socrative.com/login/student/
room	CS2230X	ids	1000-2999
room	CS2230Y	ids	3000+

for	example,	Oracle	Java	distribution’s	hash	function	for	
Strings

a	hash	function	is	just	any	function	that	turns	an	
object	into	an	integer

public class String {
// a string is stored as an array of
// "chars" (characters)
private final char value[];

// hash function for String
public int hashCode() {

int h = hash;
if (h == 0 && value.length > 0) {

char val[] = value;

for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];

}
hash = h;

}
return h;

}
}

A	paraphrase	of	Object.hashCode
specification	in	the	Java	API
• The	general	contract	of hashCode is:

• during	the	same	run	of	your	program,	hashCode on	a	specific	
object	must	always	return	the	same	result

• o1.equals(o2)	⇒	o1.hashCode()	==	o2.hashCode()

• Important	to	know	that

o1.hashCode()	==	o2.hashCode	DOES	NOT	IMPLY	
o1.equals(o2)
i.e.,	it	is	okay	for	two	different	objects	to	have	the	same	
hashCode (and	pretty	much	impossible	to	avoid)

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

If	I	have	the	following	code

which	of	the	following	statements	is	true

a) If	you	override	Cat.equals you	must	override	
Cat.hashCode

b) You	must	override	Dog.equals and	Dog.hashCode
c) You	must	override	Cat.equals,	Cat.hashCode,	

Dog.equals,	and	Dog.hashCode

Map<Cat, Dog> x = new HashMap<Cat,Dog>();

Identify	important	properties	of	
hash	codes

https://b.socrative.com/login/student/
room	CS2230X	ids	1000-2999
room	CS2230Y	ids	3000+

Running	time	of	successful	find?
• Linear	probing

• expected	length	of	a	sequence	of	non-nulls:	𝑂 1 + ?
?JK

where	𝛼 is	the	load	factor

• where	𝛼 = #	NOOPQRST
OUQUORVW

(𝛼 is	called	the	load	factor)

• worst	case:	O(n)	if	the	table	is	allowed	to	get	nearly	full	(i.e.	
𝛼 is	very	close	to	1)

null 7 2 13 null null

0 1 32 4 5

Since	the	running	time	depends	on	𝛼,	we	should	decrease	it	by	growing	
the	array	when	𝛼 becomes	too	large

Rule	of	thumb:	if	𝛼 increases	beyond	0.5	or	0.75,	grow	the	capacity

Running	time	of	successful	find?
• Chaining

• What	is	the	expected	length	of	the	longest	chain?	What	is	the	average	
length	of	a	chain?

• Of	course,	we	want	our	hash	function	to	distribute	keys	well	(if	everything	
hashes	to	a	constant	number	of	buckets,	lookup	time	would	be	O(n))

• If	you	are	lucky	enough	for	the	items	to	be	uniformly	distributed	across	
buckets	then	the	average	length	of	chains	would	be	1/𝛼

• However,	the	birthday	paradox	from	(see,	Discrete	Math)	tells	us	that	the	
probability	of	some	collisions	is	high	even	if	keys	are	drawn	from	uniform	
distribution

• Therefore,	𝛼 should	still	be	kept	sufficiently	smaller	than	1

null null null null

0 1 32 4 5

7

13 \

2 \

Today’s	learning	objectives

• Identify	various	data	structures	to	implement	a	Set
• Calculate	the	memory	usage	of	hashing	data	
structures
• Execute	Set	methods	for	various	hash	set	
implementations,	including	when	there	are	
collisions
• Identify	important	properties	of	hash	codes

Resources

Visualizations	of	probing	and	chaining	hash	tables!

http://www.cs.usfca.edu/~galles/visualization/
OpenHash.html

http://www.cs.usfca.edu/~galles/visualization/
ClosedHash.html

http://www.cs.usfca.edu/~galles/visualization/
ClosedHashBucket.html

Acknowledgements

Cache	diagrams	– Ferry24Milan

