Return of the ArrayList: analyzing the running time of resizing

/*
A List that is implemented using an array
*/

public class ArrayList implements List {
 private Object[] elements;
 private int numElements;

 @Override
 public void append(Object ele) {
 // copy existing elements to a bigger array if necessary
 if (elements.length == numElements) {
 Object[] n = new Object[elements.length+1];
 for (int i=0; i<elements.length; i++) {
 n[i] = elements[i];
 }
 elements = n;
 }
 // insert ele
 elements[numElements] = ele;
 numElements++;
 }
}
Return of the ArrayList: an analysis of resizing

If it takes one “step” to copy one element, about how many total steps will be taken to call append 1000 times when the initial size was 4?

a) 1000
b) 2000
c) 1,000,000
d) 1,000,000,000

https://b.socrative.com/login/student/
room CS2230X ids 1000-2999
room CS2230Y ids 3000+
Simulate this new scenario
Calculate the total time by a simple simulation!

steps = 0
initially ArrayList's internal array is size 4
arraysize = 4
for n in range(1, 1001):
 if n > arraysize:
 # ArrayList is full so n steps to copy to new array of size 2n
 steps += n
 # new array has x2 size
 arraysize *= 2
 # 1 step to copy the new value into the next open spot
 steps += 1

print str(n)+"\t"+str(steps)

(num eles \textit{and} num total steps)

(not the same as an experiment, where we actually
time time the ArrayList insertions)
some insertions take a long time, but the total time is growing linearly!

calls to append
Part 1

[Diagram showing two lists, one full and one empty]

Part 2

[Diagram showing a list with a single element and a note: O(n)]

worst case

best case: O(1)

step to put element here

avg case?
some insertions take a long time, but the total time is growing linearly!

calls to append

total time to insert
best \frac{P_1}{O(1)} \frac{P_2}{O(1)}
worst \frac{O(N)}{O(N)} \frac{O(W)}{O(W)}

avg \frac{75.0}{7.50} \frac{75.0}{7.50}