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The planar radiosity equation and its numerical solution
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This article gives properties of the planar radiosity equation and methods for its numerical
solution. Regularity properties of the radiosity solution are examined, including both the
effects of corners and the effects of the visibility function. These are taken into account
in the design of collocation methods with piecewise polynomial approximating functions.
Numerical examples conclude the paper.
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1. Introduction

The radiosity equation is an integral equation which relates the ‘radiosity’ or ‘brightness’
at points of a surface to the reflectivity and emissivity at such points, and to the geometric
shape of the surface. To better understand the effects of corners and edges on the regularity
of the solution function, we first investigate the analogous problem for the planar case. The
planar radiosity equation is given by

u(P) − ρ(P)

∫
Γ

u(Q)G(P, Q)V (P, Q) dSQ = E(P), P ∈ Γ. (1)

Here Γ is a planar curve. It is not necessarily connected, and it is likely to be only
piecewise smooth. The emissivity function is E(P), the reflectivity function is ρ(P), and
the unknown radiosity function is u(P). It is assumed that 0 � ρ(P) < 1 at all points
P ∈ Γ (and moreover, that ‖ρ‖∞ < 1). The radiosity kernel function G is given by

G(P, Q) = [(P − Q) · nP ]
[
(Q − P) · nQ

]
2 |P − Q|3

= cos θP cos θQ

2 |P − Q| .

(2)

The quantities nP , nQ, θP , θQ are illustrated in Fig. 1. Later on we say more about
G(P, Q). The function V (P, Q) is a ‘line of sight’ function. More precisely, if the points
P and Q can ‘see each other’ along a straight line segment which does not intersect Γ at
any other point, then V (P, Q) = 1; otherwise, V (P, Q) = 0. An unoccluded curve Γ is
one for which V ≡ 1; otherwise the curve is said to be occluded. Physically for occluded
curves, ‘shadows’ occur.
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FIG. 1. An illustration of the notation used in defining the radiosity kernel function.

Equation (1) can be obtained as follows. Given Γ , define a cylinder

S = {(x, y, z) | (x, y) ∈ Γ, −∞ < z < ∞}
and consider the spatial radiosity equation over S. This new equation has the form of (1),
but the function G(P, Q) is somewhat different than that given in (2) and the integration
is over S. If the spatial radiosity equation is considered over this cylinder, and if the
functions E and ρ are independent of z, then the spatial radiosity u is also independent
of z. In this situation, the spatial radiosity equation reduces to (1), an integral equation
over Γ .

Equation (1) is said to represent the radiosity problem in ‘flatland’; but we prefer the
interpretation given above, relating it to the spatial equation over a cylindrical surface.

This equation has been studied by a number of authors, as a prelude to studying the
spatial radiosity equation. Heckbert (1991, Chapter 3; 1992) gives a very good discussion
of the problem, pointing out some of the characteristics of the solution that we also
examine later in greater detail. Other important treatments of the determination and use
of discontinuities in the radiosity in defining the meshing are given in Lischinski et al.
(1992) and Cohen & Wallace (1993, §8.5).

Our perspective is somewhat different than in these works, as we are obtaining the
properties of the solution by examining the integral equation, relying less on the physical
properties of the problem.

For general treatments of the spatial radiosity equation, see Cohen & Wallace (1993)
and Sillion & Puech (1994).

The radiosity equation is also studied in the area of thermal radiation within mechanical
engineering, and the case we are solving is for opaque, diffuse surfaces with non-
participating media. A general treatment of thermal radiation is given by Modest (1993).
For a specific example of the radiosity equation in thermal radiation, see Modest (1993,
equation (5.3) on p 195).

In §2 we discuss the solvability of the equation, and in §3 we discuss the points of
discontinuity of the solution and its derivatives. Because of the great variety of possible
curves, we initially deal with a simple case of a polygonal boundary enclosing another
polygonal boundary. In §4, we look at the behaviour of the radiosity solution around corner
points of the boundary. §5 discusses collocation methods for the solution of equation (1),
and §6 gives numerical examples.
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2. Solvability of the equation

We first need to consider the solvability of the integral equation (1), which we write
abstractly as

u − Ku = E (3)

with K an integral operator having the kernel function

K (P, Q) = ρ(P)G(P, Q)V (P, Q).

Throughout this paper, we consider Γ to be polygonal unless the hypotheses explicitly
allow Γ to be more general. Then from (2), it follows easily that G(P, Q) = 0 whenever
P and Q belong to the same edge of Γ . If P and Q belong to different edges of Γ , there is
no difficulty with the existence of the integral in (1), but there is some difficulty as P and
Q approach a common corner point of Γ . We discuss the consequences of this in §4. The
solvability theory for (3) depends on the following lemma.

LEMMA 1 Assume C is a simple closed piecewise smooth curve, and let P ∈ C be
a point at which a tangent to C exists. Assume the region interior to C is starlike with
respect to P . Then ∫

C
G(P, Q) dSQ = 1. (4)

Proof. The corresponding result for surfaces was shown in Atkinson & Chandler (1998),
and therefore we omit the proof of (4). The proof given there was for a convex interior
region, but all that is important in that proof is that the region be starlike with respect to
the point P . ✷

A solvability theory for (3) can be developed within the context of L∞(Γ ). There
is some initial difficulty in that point evaluation is not considered to be well defined on
L∞(Γ ), but this can be handled in the manner discussed in Atkinson et al. (1983). The
latter shows that point evaluation can be defined as a bounded linear functional which
coincides with the normal usage when applied to the evaluation of functions at points at
which they are continuous. With this usage, it is straightforward to show that K is well
defined from L∞(Γ ) to L∞(Γ ). Moreover, we obtain

‖K‖ � ‖ρ‖∞ < 1 (5)

which is proven as follows.
Assume Γ is polygonal, and let P ∈ Γ be other than a corner point. Let

ΓP = {Q ∈ Γ | V (P, Q) = 1} ∪ eP

where eP is the edge of Γ containing P . By direct examination of (2), G(P, Q) � 0 on
ΓP , with G(P, Q) ≡ 0 on eP . Then for u ∈ L∞(Γ ),

|Ku(P)| = ρ(P)

∫
ΓP

|u(Q)| G(P, Q) dSQ

� ‖u‖∞ ‖ρ‖∞
∫

ΓP

G(P, Q) dSQ .
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The result (4) extends to this boundary ΓP . Assuming ΓP is not connected, we must
extend it to a simple closed polygonal curve Γ̃P . To do this, pass in a counterclockwise
direction about P , viewing ΓP . As we do so, connect neighbouring endpoints of
neighbouring segments of ΓP using straight line segments. This produces a simple closed
polygonal curve Γ̃P , with all additions to ΓP visible from P or located on an extension of
eP . Apply Lemma 1 to the curve Γ̃P , obtaining∫

ΓP

G(P, Q) dSQ �
∫

Γ̃P

G(P, Q) dSQ = 1.

Combining these results proves ‖K‖ � ‖ρ‖∞. The final inequality in (5) follows from the
assumption on ρ.

The result (5) is also true for more general piecewise continuous curves Γ , as the above
proof needs only a slight modification. The above derivation can also be used to show∫

Γ

G(P, Q)V (P, Q) dSQ � 1 (6)

at all non-corner points P ∈ Γ .
The solvability of (3) follows immediately from (5) and the geometric series theorem,

with

‖u‖∞ = ∥∥ (I − K)−1 E
∥∥∞ � ‖E‖∞

1 − ‖K‖ . (7)

Moreover, the iteration

um+1 = E + Kum, m = 0, 1, ... (8)

converges to u with

‖u − um‖∞ � ‖K‖m ‖u − u0‖∞ , m � 0.

This iteration is the basis of many commonly used solution methods for solving
discretizations of (3).

3. Regularity of the solution

There is a large variety to the possible curves Γ . To make more intuitive our general
techniques for analysing these more general boundaries, we initially consider the quite
special boundary of Fig. 2. The curve Γ shown in Fig. 2 is composed of inner and outer
curves Γi and Γo, respectively. The subscripts ‘o’ and ‘i’ denote ‘outer’ and ‘inner’,
respectively. We parametrize these two boundaries by ro(s) and ri (s), respectively, with
0 � s � 1. It is assumed that s will be directly proportional to the arc-length on each
boundary, so that

∣∣r ′
o(t)

∣∣ and
∣∣r ′

i (t)
∣∣ are constant (except at the corner points, where they

are undefined), and these constants are denoted respectively by
∣∣r ′

o

∣∣ and
∣∣r ′

i

∣∣. In Fig. 2,
the corners of Γo have coordinates {(±1, ±1)}, those of Γi have coordinates {(±a, ±a)}
for some 0 < a < 1. Certain important points on the boundary are marked with special
symbols for easy reference, and their significance is explained below.
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FIG. 2. The points � are discontinuities of ao,i (s) and bo,i (s); the points � and ✷ are discontinuities of b′
o,o(s),

and the points � and � are discontinuities of a′
o,o(t).

Define the parametrization of the outer boundary Γo as follows. For 0 � s � 1,

ro(s) =



x = 1 − 8s, y = 1, 0 � s � 1
4 ,

x = −1, y = 1 − 8
(

s − 1
4

)
, 1

4 � s � 1
2 ,

x = −1 + 8
(

s − 1
2

)
, y = −1, 1

2 � s � 3
4 ,

x = 1, y = −1 + 8
(

s − 3
4

)
, 3

4 � s � 1.

Extend ro(s) periodically to −∞ < s < ∞ using

ro(s + k) = ro(s), 0 � s � 1, k ∈ Z.

Define the parametrization of the inner boundary Γi using

ri (s) = a ro(1 − s), −∞ < s < ∞.

This means the outer boundary is oriented counterclockwise and the inner boundary is
oriented clockwise. Note that both r ′

o(s) and r ′
i (s) are piecewise continuous, lacking

continuity only at the corners of the respective curves Γo and Γi . For more general two-
part curves, such as those in Figs 3 and 4, we can also define analogous parametrizations.
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FIG. 3. The points marked ‘◦’, ‘�’, and ‘�’ are locations at which the derivative u′ with respect to the arc-length
is likely to be discontinuous.
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FIG. 4. The outer boundary is the unit square; the inner boundary is a crescent. The symbols ‘�’ and ‘✷’ denote
some points at which u′ is usually discontinuous.

The results of this section are derived only for the polygonal-type boundaries of Figs
2 and 3. Later in the section, we discuss the generalization of these results to curved
piecewise smooth boundaries (e.g. Fig. 4) and to more complicated boundaries, polygonal
and otherwise.
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For the radiosity equation (1), we have the following for the unknown solution u on the
outer boundary of Fig. 2 (and similarly for Figs 3 and 4). For 0 � s � 1,

u(ro(s)) = E(ro(s)) + ρ(ro(s))
∫ bo,o(s)

ao,o(s)
G(ro(s), ro(t))u(ro(t))

∣∣r ′
o

∣∣ dt

+ρ(ro(s))
∫ bo,i (s)

ao,i (s)
G(ro(s), ri (t))u(ri (t))

∣∣r ′
i

∣∣ dt

≡ E(ro(s)) + ρ(ro(s)) [I1(s) + I2(s)] .

(9)

The functions
{
ao,o(s), bo,o(s)

}
are the limits on t such that ro(t) ∈ Γo can be seen by

ro(s); and
{
ao,i (s), bo,i (s)

}
are the limits on t such that ri (t) ∈ Γi can be seen by ro(s).

Figure 2 contains an example in which the points ro
(
bo,o(s)

)
, ro

(
ao,o(s)

)
are shown for

a generic point ro(s) on the right-hand side of Γo. The functions
{
ao,o(s), bo,o(s)

}
vary

continuously with s, but the derivative is discontinuous at certain critical points in addition
to the corners of the outer boundary. For these additional critical points, see the points
marked ‘♦’, ‘✷’, and ‘�’. The asserted discontinuous behaviour can be shown directly by
giving formulas for

{
ao,o(s), bo,o(s)

}
; it can also be argued from more general principles.

The function a′
o,o(s) is discontinuous at the points ‘♦’, as the point ro

(
ao,o(s)

)
is a

corner point in such cases. Analogously, the function b′
o,o(s) is discontinuous at the points

‘✷’, as ro
(
bo,o(s)

)
is then a corner point. The points marked ‘�’ are the intersections of

the lines containing the edges of the inner boundary Γi with the outer boundary Γo. At such
points, the functions a′

o,o(s) and b′
o,o(s) are discontinuous due to the ‘line of sight segment’

from ro(s) to ro
(
ao,o(s)

)
changing from pivoting about one corner of Γi to another corner

of Γi as s increases.
Considering the final integral I2(s) in (9), the limits

{
ao,i (s), bo,i (s)

}
are piecewise

constant functions; the discontinuities s again correspond to the points ro(s) on Γo that are
marked ‘�’. However, the last integral in (9) is not discontinuous for such values of s, a
result we justify later.

For the radiosity equation viewed from a point ri (s) on the inner boundary Γi ,

u(ri (s)) = E(ri (s)) + ρ(ri (s))
∫ bi,o(s)

ai,o(s)
G(ri (s), ro(t))u(ro(t))

∣∣r ′
o

∣∣ dt. (10)

The functions
{
ai,o(s), bi,o(s)

}
are the limits on t for the integration over Γo. Note that{

ai,o(s), bi,o(s)
}

are piecewise constant functions and they are discontinuous at points s
corresponding to ri (s) a corner of the inner boundary Γi .

3.1 Continuity of the solution

We assume the given data functions ρ and E are continuous except at corners of Γ .
From this and (9)–(10), we show u(P) is continuous except possibly at the corner points
of Γ . Examining first the continuity of u(ro(s)) by means of (9), the continuity of{
ao,o(s), bo,o(s)

}
leads to continuity for the first integral I1(s) on the right-hand side of

(9) at all non-corner points ro(s). The special case that ro(s) is a corner point of Γo is
examined later in §4 (cf (24)); for u(P) continuous at the corner, so is I1(s).
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For the second integral I2(s) on the right-hand side of (9), we must examine what
happens as the point r0(s) passes through a corner point of Γo and through any point
marked ‘�’, as

{
ao,i (s), bo,i (s)

}
are discontinuous at such points. For the discussion of the

continuity of I2(s), we begin with the corner points of Γo. As P = ro(s) passes through
a corner of Γo, the normal nP changes direction, discontinuously. As a consequence, the
kernel function G(P, Q) also changes discontinuously at all points Q ∈ Γi . It is then
straightforward to show that I2(s) is usually discontinuous at the corner points of Γo,
making u(ro(s)) also discontinuous at such points. This is illustrated later in §6.

Consider next the continuity of I2(s) at the points marked ‘�’. Let a point � be given
by r0(s∗), and assume that for s < s∗ and s∗ − s small, one can see only a single edge e1
of Γi ; for s > s∗ and s − s∗ small, one can see both e1 and a second edge e2. Then

∫ bo,i (s)

ao,i (s)
G(ro(s), ri (t))u(ri (t)) dt =


∫

e1

G(ro(s), Q)u(Q) dSQ, s < s∗,∫
e1∪e2

G(ro(s), Q)u(Q) dSQ, s > s∗.

We must show that

lim
s↘s∗

∫
e2

G(ro(s), Q)u(Q) dSQ = 0. (11)

This follows by examining the kernel function G(ro(s), Q) of (2). From there, as s ↘ s∗,
the line ro(s)− Q becomes perpendicular to nQ , and thus the kernel approaches 0, proving
(11). Note that this proof works as well for the polygonal curves of Figs 3 and 5 as it does
for Fig. 2. This also completes the proof of the continuity of u(ro(s)).

To discuss whether u(ri (s)) is continuous, consider (10). Away from a corner of Γi , the
integration in (10) is a simple integration of a nonsingular kernel function G(ri (s), Q) and
a bounded measurable function u(Q) over a fixed portion of Γo. It follows that u(ri (s))
is continuous away from corners of Γi . A discontinuity of u(ri (s)) follows at any corner
of Γi at which either ρ and E is discontinuous. But even if ρ and E are continuous at the
corners of Γ , it is likely that the integral in (10) is discontinuous and that therefore u(ri (s))
is also discontinuous. The reason for the discontinuity in the integral is that as one travels
along Γi and around a corner, the portion of Γo that is viewable changes significantly, and
therefore the integral of

G(ri (s), ro(t))u(ro(t))

also changes. It is very unlikely that the integral will remain the same as ri (s) passes
through such a corner of Γi (except for cases when u(ro(t)) possesses certain symmetry
relative to the corner). This will happen at any corner at which the angle facing into the
region is greater than π radians. In the much more complicated Fig. 5 this happens with
corners on both the interior and exterior boundaries.

In general, these results extend easily to any polygonal curve contained within the
interior of another polygonal curve. To generalize this result on the continuity of u to
nonpolygonal curves such as Fig. 4 requires some additional discussion, but it is a fairly
straightforward analogue of what has been discussed for Fig. 2. An important lemma for
doing such is the following.
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LEMMA 2 Assume C to be a twice continuously differential curve (open or closed) and
let P, Q ∈ C . Then

|G(P, Q)| � αC |P − Q|
with αC dependent on C .

Proof. The proof is an immediate consequence of∣∣cos θQ
∣∣ , |cos θP | � βC |P − Q| , P, Q ∈ C.

A proof of this can be found in most books on boundary integral equation reformulations
of Laplace’s equation in the plane. In addition,

cos θQ

2 |P − Q|
is a continuous function of P, Q on C, with a removable singularity at P = Q, and it
is the double-layer kernel obtained when writing a solution of Laplace’s equation as a
double-layer potential. ✷

3.2 Continuity of the first derivative

We investigate the behaviour of the derivative of the unknown with respect to s, which is
a constant multiple of the arc-length. To this end, form the derivative of formulas (9)–(10)
with respect to s, doing so at points other than the corner points of Γ .

d

ds
u(ro(s)) = [E(ro(s))]′ + ρ(ro(s))

∫ bo,o(s)

ao,o(s)

d

ds
[G(ro(s), ro(t))] u(ro(t))

∣∣r ′
o

∣∣ dt

+ [ρ(ro(s))]′
∫ bo,o(s)

ao,o(s)
G(ro(s), ro(t))u(ro(t))

∣∣r ′
o

∣∣ dt

+ρ(ro(s))G
(
ro(s), ro(bo,o(s))

)
u

(
ro(bo,o(s))

) ∣∣r ′
o

∣∣ b′
o,o(s)

−ρ(ro(s))G
(
ro(s), ro(ao,o(s))

)
u

(
ro(ao,o(s))

) ∣∣r ′
o

∣∣ a′
o,o(s)

+ρ(ro(s))
∫ bo,i (s)

ao,i (s)

d

ds
[G(ro(s), ri (t))] u(ri (t))

∣∣r ′
i

∣∣ dt

+ [ρ(ro(s))]′
∫ bo,i (s)

ao,i (s)
G(ro(s), ri (t))u(ri (t))

∣∣r ′
i

∣∣ dt

≡ [E(ro(s))]′ + I1 + I2 + I3 + I4 + I5 + I6.

(12)

d

ds
u(ri (s)) = [E(ri (s))]′ + ρ(ri (s))

∫ bi,o(s)

ai,o(s)

d

ds
[G(ri (s), ro(t))] u(ro(t))

∣∣r ′
o

∣∣ dt

+ [ρ(ri (s))]′
∫ bi,o(s)

ai,o(s)
G(ri (s), ro(t))u(ro(t))

∣∣r ′
o

∣∣ dt

≡ [E(ri (s))]′ + I7 + I8.

(13)
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The integrals I1, ..., I8 are assigned based on the order given in the formulas containing
the integrals.

The above formulas contain the first derivatives of E(r(s)) and ρ(r(s)). We initially
assume for this section that these derivatives are continuous except possibly at points at
which we expect u(r(s)) to be discontinuous, namely the corners of Γ . Referring to Fig. 2,
it will turn out that some of the remaining terms in the above formulas are likely to be
discontinuous at the additional points denoted ‘♦’, ‘✷’, and ‘�’. Therefore, it would not
change the differentiability results to also allow the derivatives [E(r(s))]′ and [ρ(r(s))]′ to
be discontinuous at those same points.

Examine the regularity of [u(ro(s))]′ by using (12), with ro(s) not a corner point. For
terms I2 and I6, the only points of possible discontinuity are the corner points of Γo. For I1,

the integrand is identically zero for ro(s) and ro(t) sharing a common edge, and therefore
the integrand is not singular, making I1 a continuous function of s away from the corners
of Γo. The integral I5 has an integrand that is well defined except for the corners of Γ , and
it is nonsingular at all other points, along with all orders of derivatives of it.

The remaining terms are I3 and I4, and they are discontinuous at some new points
of the boundary, namely where a′

o,o(s) and b′
o,o(s) are discontinuous. Thus in Fig. 2, the

derivative [u(ro(s))]′ is likely to be discontinuous at the corner points and at the points
denoted ‘♦’, ‘✷’, and ‘�’

The terms in (13) are all well behaved except at the corners of Γi . This follows from the
function G(ri (s), ro(t)) being a well behaved function of s and t except for ri (s) a corner
point of Γi . Thus [u(ri (s))]′ is continuous except possibly at the corners of Γi , and it is
likely to be discontinuous at those corners.

These results for the integral limits and for the continuity of the function u(r(s)) and
its derivative generalize immediately to boundaries Γ consisting of an inner polygon Γi

and an outer polygon Γo with both polygons having convex interiors. Thus in Fig. 3, the
first derivative [u(r(s))]′ is likely to be discontinuous at the corner points and at the points
denoted ‘♦’ and ‘�’; generalizing further, in Fig. 5 [u(r(s))]′ is likely to be discontinuous
at the corner points and at the points denoted ‘♦’.

The points marked ‘♦’ and ‘✷’ of Fig. 2 and the points marked ‘♦’ in Fig. 3 are
obtained by connecting corners of Γi to corners of Γo, finding where they intersect on Γo,
provided the line segment involved is located entirely within the region between Γi and
Γo. The points marked ‘�’ are obtained by extending line segments of Γi to where they
intersect with Γo, again provided the extended line segment is located entirely within the
region between Γi and Γo. We can also have the situation of line segments of Γo being
extended to have an intersection with some point of Γi , with a behaviour for u(r(s))
analogous to that for points ‘�’ on Γo of Figs 2 and 3. An example of the latter is shown
in Fig. 5, in which both Γi and Γo are more complicated than in the earlier cases.

3.3 Continuity of the second derivative

In order to avoid problems involved with analysing the second derivative of Ku, we use
iteration to re-write the equation u = E + Ku as

u = E + KE + K2u. (14)
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Γ
o

Γ
i

FIG. 5. Points at which the first derivative is likely to be discontinuous are marked ‘�’, in addition to the corner
points.

We begin by considering the second derivative of KE , and then we consider the second
derivative of K2u. In analogy with (9) and (10), we have

KE (ro(s)) = ρ(ro(s))
∫ bo,o(s)

ao,o(s)
G(ro(s), ro(t))E(ro(t))

∣∣r ′
o

∣∣ dt

+ρ(ro(s))
∫ bo,i (s)

ao,i (s)
G(ro(s), ri (t))E(ri (t))

∣∣r ′
i

∣∣ dt.

(15)

KE(ri (s)) = ρ(ri (s))
∫ bi,o(s)

ai,o(s)
G(ri (s), ro(t))E(ro(t))

∣∣r ′
o

∣∣ dt. (16)

In analogy with the discussion of (13), the derivative of (16) presents no problems, with
the points of difficulty being again the four corners of Γi , and nothing else. For the second
derivative, we can proceed exactly as for the first derivative. Again there is no difficulty
for ri (s) not a corner point of Γi , as the integrand is nonsingular. The derivative of (15)
is analogous to that of (12), with u replaced by E . For the second derivative, all terms are
well behaved away from the points previously identified as points of possible discontinuity
for u and its first derivative.

The more interesting case is that of the second derivative of K2u. On the outer
boundary,
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(
K2u

)
(ro(s))

= ∣∣r ′
o

∣∣2
ρ(ro(s))

∫ bo,o(s)

ao,o(s)
G(ro(s), ro(τ ))ρ(ro(τ ))

∫ bo,o(τ )

ao,o(τ )

G(ro(τ ), ro(t))u(ro(t)) dt dτ

+ ∣∣r ′
o

∣∣ ∣∣r ′
i

∣∣ ρ(ro(s))
∫ bo,o(s)

ao,o(s)
G(ro(s), ro(τ ))ρ(ro(τ ))

∫ bo,i (τ )

ao,i (τ )

G(ro(τ ), ri (t))u(ri (t)) dt dτ

+ ∣∣r ′
o

∣∣ ∣∣r ′
i

∣∣ ρ(ro(s))
∫ bo,i (s)

ao,i (s)
G(ro(s), ri (τ ))ρ(ri (τ ))

∫ bi,o(τ )

ai,o(τ )

G(ri (τ ), ro(t))u(ro(t)) dt dτ.

(17)

On the inner boundary,(
K2u

)
(ri (s))

= ∣∣r ′
o

∣∣2
ρ(ri (s))

∫ bi,o(s)

ai,o(s)
G(ri (s), ro(τ ))ρ(ro(τ ))

∫ bo,o(τ )

ao,o(τ )

G(ro(τ ), ro(t))u(ro(t)) dt dτ

+ ∣∣r ′
o

∣∣ ∣∣r ′
i

∣∣ ρ(ri (s))
∫ bi,o(s)

ai,o(s)
G(ri (s), ro(τ ))ρ(ro(τ ))

∫ bo,i (τ )

ao,i (τ )

G(ro(τ ), ri (t))u(ri (t)) dt dτ.

(18)

The second derivative will be complicated, but there are only a few terms in which
new points of possible bad behaviour are introduced. The most important parts in the first
derivative include the term∫ bo,o(bo,o(s))

ao,o(bo,o(s))
G(ro(bo,o(s)), ro(t))u(ro(t)) dt

and the corresponding term obtained by reversing the roles of ao,o and bo,o. In forming the
various derivatives, recall that the functions{

ao,i (s), bo,i (s), ai,o(s), bi,o(s)
}

are piecewise constant. When taking the second derivative in the above expression, the
important new expressions are

d

ds
bo,o(bo,o(s)),

d

ds
ao,o(bo,o(s)),

G(ro(bo,o(s)), ro(bo,o(bo,o(s)))) u(ro(bo,o(bo,o(s)))),

G(ro(bo,o(s)), ro(ao,o(bo,o(s)))) u(ro(ao,o(bo,o(s))))

(19)

and the corresponding expressions in which the roles of bo,o and ao,o are reversed. Thus we
must look at the points based on ‘iterating’ the previous points of potential bad behaviour:

ro(bo,o(bo,o(s))), ro(ao,o(bo,o(s))), ro(bo,o(ao,o(s))), ro(ao,o(ao,o(s))).
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FIG. 6. The points at which ao,o ◦ ao,o and bo,o ◦ bo,o are ill behaved are indicated by ‘�’; the original points of
ill behaviour for ao,o and bo,o are indicated by ‘◦’, namely the elements of S1.

The quantities ao,o(bo,o(s)) and bo,o(ao,o(s)) are not of interest, as

ao,o(bo,o(s)) = s, bo,o(ao,o(s)) = s, 0 � s � 1 (20)

and thus

ro(ao,o(bo,o(s))) ≡ ro(bo,o(ao,o(s))) ≡ ro(s).

The truth of (20) is immediate from a picture such as Fig. 2, as it says that, when travelling
a straight line, what is the upper limit when going in one direction is the lower limit when
travelling in the opposite direction.

The identities in (20) are also of use in computing the points of ill behaviour for
ao,o(ao,o(s)) and bo,o(bo,o(s)). We want to find the points s∗ such that bo,o(bo,o(s)) is ill
behaved in a neighbourhood of s∗. Thus we want to solve bo,o(s∗) = σ , where σ is a point
such that bo,o(s) is ill behaved in a neighbourhood of σ . Solve this by using s∗ = ao,o(σ ).
The collection of all such points are indicated in Fig. 6 by ‘�’, where the original points
r(s) of potential ill behaviour for u are shown by ‘◦’. Alternatively, let S0 be the set of
corners of Γ , and let S1 be the union of S0 and the points of ill behaviour for u as based
on its first derivative. To obtain S2, apply both ao,o and bo,o to S1. All the new points in S2
are points at which ao,o ◦ ao,o and bo,o ◦ bo,o are ill behaved and at which u is usually ill
behaved.

To obtain the points of S1 and S2 on a physical basis, we start with the corners of Γo

and Γi , the elements of S0. Connect the elements of S0 by line segments in all possible
ways. Look for those in which the line segment lies entirely within the region bounded
by Γ . If such a line segment intersects another point of Γ that is viewable directly from
the original points in the line segment, then this is an element of S1. The elements of S2
are defined analogously by connecting all of the points of S1 in the same manner, looking
for points of intersection with Γ . This procedure works only if Γ is composed entirely of
polygonal paths.
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x
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θ
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FIG. 7. An unoccluded corner of a polyhedral boundary, with inner angle θ .

We can of course continue this recursively, and doing so we will obtain that the
elements of Sk − Sk−1 are new points at which the kth derivative of u(r(s)) is likely to
be discontinuous. This construction works for all polygonal curves Γ . The curve in Fig. 5
shows that formulas (12)–(13) will need to be generalized, but the same kind of integrals
and limits will be involved. We have also omitted the concept of a ‘point source’. The latter
is popular in the literature, but we prefer to consider such sources as being defined over a
small non-empty element.

For curves Γ that are not polygonal, as in Fig. 4, we must generalize the construction.
As can be seen from that figure, we must sometimes connect the corner points of Γo with
points of tangency of Γi , in this case with points on Γi,1, in order to obtain the elements of
S1. We consider here mainly the case of polygonal curves Γ .

4. Behaviour at corners

The solution of the integral equation (1) has singular behaviour around corner points,
much as with the corresponding boundary integral equations of the second kind for solving
Laplace’s equation on a planar region with corners. Consider the corner shown in Fig. 7,
to be called a ‘wedge’ in this paper. It has both arms of length 1, its vertex is at the origin,
and it has a central angle of θ with 0 < θ < π , with this angular region being included in
the domain enclosed by Γ . This restriction is needed in order that the two arms can ‘see
each other’. We will initially consider the integral equation (1) over this boundary, as the
behaviour of the solution in this case is typical of what happens in the case of a general
polyhedral boundary. For general boundaries, we would decompose the boundary into ε-
neighbourhoods of the corner points and the sections between those points. The regularity
properties when using the wedge of Fig. 7 turn out to be the same as when considering an
ε-neighbourhood of a corner.
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The integral equation (1) on the wedge becomes

u1(x) − ρ1(x)

2
sin2 θ

∫ 1

0

xr u2(r) dr[
x2 + r2 − 2xr cos θ

] 3
2

= E1(x),

u2(x) − ρ2(x)

2
sin2 θ

∫ 1

0

xr u1(r) dr[
x2 + r2 − 2xr cos θ

] 3
2

= E2(x)

(21)

for 0 < x � 1 and

u1(x) = u(x, 0), u2(x) = u(x cos θ, x sin θ)

with analogous notation for ρ1, ρ2, E1, E2. We can prove that if ρ1, ρ2, E1, E2 ∈ C[0, 1],
and if

‖ρ‖∞ = max
{‖ρ1‖∞ , ‖ρ2‖∞

}
< 1

then u1 and u2 exist, are unique, and are continuous on (0, 1]. Whether or not there is
continuity at the origin depends on whether ρ and E are continuous at the origin of the
wedge. Moreover, regularity results for u1 and u2 on (0, 1] follow directly from (21) and
the regularity of ρ1, ρ2, E1, E2. The proofs are omitted.

Assume now that the reflectivities ρ1 and ρ2 are nonzero constants, although not
necessarily the same. Modify the first equation by dividing by

√
ρ1 and the second by√

ρ2. Introduce new unknowns

vj (x) = uj (x)√
ρj

, j = 1, 2

and obtain the new equations

v1(x) −
√

ρ1ρ2

2
sin2 θ

∫ 1

0

xr v2(r) dr[
x2 + r2 − 2xr cos θ

] 3
2

= E1(x)√
ρ1

,

v2(x) −
√

ρ1ρ2

2
sin2 θ

∫ 1

0

xr v1(r) dr[
x2 + r2 − 2xr cos θ

] 3
2

= E2(x)√
ρ2

.

We add and subtract these equations, obtaining

v±(x) ∓
√

ρ1ρ2

2
sin2 θ

∫ 1

0

(x/r) v±(r)[
(x/r)2 + 1 − 2 (x/r) cos θ

] 3
2

dr

r
= E±(x), 0 < x � 1

with v+ = v1+v2, v−(x) = v1−v2, and similarly for E±(x). These are Mellin convolution
integral equations of the second kind, with the Mellin kernel

k(t) =
√

ρ1ρ2

2

t sin2 θ[
t2 − 2t cos θ + 1

] 3
2

, t � 0. (22)
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Using it, we can write the integral equations as

v±(x) ∓
∫ 1

0
k

( x

r

)
v±(r)

dr

r
= E±(x), 0 < x � 1. (23)

This reduces the system (21) to the study of two single equations of the second kind in
(23), each based on the same integral operator. Letting x → 0, we can also show

lim
x→0

∫ 1

0
k

( x

r

)
v(r)

dr

r
= v(0)

√
ρ1ρ2

2

∫ ∞

−∞
sin2 θ eσ dσ[

e2σ − 2eσ cos θ + 1
] 3

2

= cos2
(

θ

2

) √
ρ1ρ2v(0)

(24)

provided v ∈ C[0, 1]. This can be used to calculate the solutions of (23) at x = 0:

v±(0) = E±(0)

1 ∓ cos2 (θ/2)
√

ρ1ρ2
.

Consider the operator

Lv(x) =


∫ 1

0
k

( x

r

)
v(r)

dr

r
, 0 < x � 1,

cos2
(

θ

2

) √
ρ1ρ2v(0), x = 0.

(25)

This is a bounded operator from C[0, 1] to C[0, 1], with

‖L‖ = cos2
(

θ

2

) √
ρ1ρ2.

For ρ1, ρ2 < 1, we have that ‖L‖ < 1, and therefore equation (23) is uniquely solvable in
C[0, 1] by the geometric series theorem. Moreover,

‖v±‖∞ � ‖E±‖∞
1 − ‖L‖ . (26)

The operator L is not compact, due to (25) in which it acts like a Dirac delta function.
Integral equations of the form (23) have been well studied in connection with solving

planar boundary integral equations for Laplace’s equation on polygonal regions in the
plane; see, for example, Chandler & Graham (1988), Costabel & Stephan (1985), and
Elschner (1990). We can use that framework to study the behaviour of the solutions v(x)

to (23) as x → 0. A fundamental result for obtaining this behaviour is the following result
taken from Lemma 4.3 of Costabel & Stephan (1985).

LEMMA 3 For a general function w for which w(e−t ) belongs to L2(−∞, ∞), the Mellin
transform ŵ is defined by

ŵ(λ) =
∫ ∞

0
x iλ−1w(x) dx =

∫ ∞

−∞
e−iλtw(e−t ) dt.
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Assume ŵ(λ) is meromorphic in a strip imag(λ) ∈ (α0, α1 + ε) where α0, α1 ∈ R, α0 <

α1, α0 < − 1
2 , ε > 0. Assume ŵ(λ) has a pole of order 1 at a point ζ for which imag(ζ ) =

α1, and assume there are no other poles in the strip α0 < imag(λ) < α1 + ε. For λ in this
strip with imag(λ) = const, assume that ŵ(λ) is ‘rapidly decreasing’ as |real(λ)| → ∞.
Then

w(x) = γ xα1 + g(x) (27)

where g(x) is smoother at x = 0 than the function xα1 .

A more precise statement involving membership by w and g in various fractional order
Sobolev spaces is given in Lemma 4.3 of Costabel & Stephan (1985).

Consider now the general Mellin convolution integral equation

v(x) − σ

∫ ∞

0
k

( x

r

)
v(r)

dr

r
= E(x), 0 < x < ∞ (28)

defined over the entire interval 0 � x < ∞, with k an arbitrary Mellin convolution kernel.
The constant σ = ±1. Apply the Mellin transform operation to the equation and solve for
v̂(λ), obtaining

v̂(λ) = Ê(λ)

1 − σ k̂(λ)
. (29)

We determine the zeros of the denominator to locate the poles of v̂(λ). We assume
differentiability properties for E and k such that ŵ ≡ v̂ will satisfy the hypotheses of
the above lemma. Assuming that Ê(λ) is a well behaved function, we seek the poles of
v̂(λ) from the above denominator. We seek a zero ζ of 1 − σ k̂(λ) for which imag(ζ ) = α1
with α1 as small as possible.

Our equation (23) is defined over [0, 1] rather than [0, ∞), but that can be dealt with
using standard techniques. To see this, consider the equation

v(x) − σ

∫ 1

0
k

( x

r

)
v(r)

dr

r
= E(x), 0 < x � 1. (30)

It is a standard construction that we can extend v(x) to all of [0, ∞) in such a way as to
preserve whatever smoothness v(x) possesses on (0, 1] and such that support(v) is finite.
Having done this, next extend E(x) using

E(x) = v(x) − σ

∫ 1

0
k

( x

r

)
v(r)

dr

r
, x > 1.

The regularity of E for x � 1 follows from that of k and v. This allows us to now write

v(x) − σ

∫ 1

0
k

( x

r

)
v(r)

dr

r
= E(x), 0 < x < ∞.

Next, add to each side a suitable integral over [1, ∞), to obtain

v(x) − σ

∫ ∞

0
k

( x

r

)
v(r)

dr

r
= E(x) − σ

∫ ∞

1
k

( x

r

)
v(r)

dr

r
≡ F(x).
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TABLE 1
Exponent values for asymptotic behaviour in (27) for an angle of θ = π/2√

ρ1ρ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α1 0.951 0.903 0.856 0.809 0.763 0.718 0.673 0.627 0.582 0.536

The new function is well defined since v(r) has compact support and the integral is finite;
its regularity is easily determined. This new equation is of the desired form (28). Rather
than attempting to be general as to the functions k and E to which this argument applies,
we will instead consider only the function k of (22) and we assume E is a smooth function
on [0, 1]. Then F is an equally smooth function on [0, ∞).

We must now determine whether or not 1 − σ k̂(λ) has a simple zero ζ with imag(ζ ) =
α1 for some real α1 and with 1−σ k̂(λ) analytic for imag(ζ ) < α1. This particular problem
can be shown to be exactly the same as occurs when examining the edge singularities of
the spatial radiosity equation for polyhedral boundaries, and the latter is examined in some
detail in Rathsfeld (1997, §2). Separately from us, Rathsfeld notes also that the planar
radiosity equation and the spatial radiosity equation with edge singularities reduce to the
same Mellin convolution integral equation, although his work is entirely concerned with
the more difficult spatial problem.

We apply the results of Rathsfeld (1997, §2) to our situation, and we must examine the
denominator 1 − σ k̂(λ) for the two cases σ = ±1. The case with σ = +1 leads to smaller
values of the exponent α1 in (27), and thus we consider only that case. Table 1 contains the
values of α1 for an angle of θ = π/2, which is the angle in our example in Fig. 2. These
results are computed using the Maple code contained in Rathsfeld (1997, §2). As the angle
θ → 0 and the reflectivity ρ1ρ2 → 1, it is demonstrated in Rathsfeld (1997, Table 1) that
α1 ↘ 0.

These results show that the solutions ui (x) of (21) will satisfy

ui (x) = ci xα1 + gi (x), i = 1, 2 (31)

with gi (x) having smoother behaviour than xα1 , with α1 chosen suitably, as in the table.
It follows that the first derivative of each ui (x) will become unbounded as x ↘ 0. One
consequence is that piecewise polynomial methods of approximating ui (x) will probably
require a graded mesh in order to obtain optimal orders of convergence. We consider this
in more detail in §5.

4.1 The combined effects of corners

Returning to the radiosity problem posed on the boundary shown in Fig. 2, assume that E
is piecewise continuous on Γ = Γo ∪ Γi , with E continuous on each polygonal side. Then
u will be discontinuous at the corner points of Γo and Γi , while possessing the behaviour
shown in (31). We have in addition that the first derivatives with respect to the arc length of
u will be discontinuous at the points indicated by ‘♦’, ‘✷’, and ‘�’, with the behaviour of
the derivative being a direct consequence of the behaviour of u in the vicinity of the corners
of Γo. Thus the first derivatives of u will have the behaviour shown in (31) for u around
the corner points of Γo. This means another form of grading is likely to be needed for the
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approximation of u in the neighbourhood of the points � and ✷, with α1 in (31) replaced by
α1 + 1 at such points. This can be continued to the points at which the second derivative of
u is discontinuous, indicated by ‘�’ in Fig. 6, with the second derivative having a behaviour
as in (31), but with α1 replaced by α1 + 2 at such points. Clearly we can continue this ad
infinitum.

5. The collocation solution of the radiosity equation

The collocation method for solving (1) amounts to finding a particular function from a
given class so that it satisfies the integral equation at a given set of node points on Γ .
We use trial functions which are piecewise polynomial of a given degree d � 0. See
Chapter 3 of Atkinson (1997) for a review of the general theory of collocation methods.
The collocation method approximates the radiosity (u ◦ r) (s) ≡ u(r(s)), and this requires
knowing the points of discontinuity of the radiosity and its low-order derivatives. Again,
we restrict ourselves to boundaries Γ consisting of two parts Γo and Γi .

We need a set of ‘breakpoints’ for defining our piecewise polynomial approximation
on Γo. To begin, let

0 = σ0 < σ1 < · · · < σ� = 1 (32)

be chosen so that the set {ro(σi )} contains all the corners of Γo. In addition, for interpolation
of degree d , assume {ro(σi )} contains all points at which the derivatives

dk

dsk [u(r(s))] , k = 1, ..., d

are discontinuous. Let a sequence of meshes {Mn | n = 1, 2, ...} be given for [0, 1]; we
write Mn as

0 = t (n)
0 < t (n)

1 < · · · < t (n)
Nn

= 1

and assume each Mn contains the set {σi } of (32). Let

hn = max
i=1,...,Nn

(
t (n)
i − t (n)

i−1

)
.

To simplify the notation, we generally omit the reference to n in {t (n)
i } and hn when the

meaning is clear.
Introduce a mesh

0 � η0 < η1 < · · · < ηd � 1. (33)

On each interval [ti−1, ti ], define d + 1 interpolation nodes by

τi, j = ti−1 + ηj (ti − ti−1) , j = 0, 1, ..., d. (34)

Given f ∈ C[0, 1], define a piecewise polynomial interpolant of f as follows. For ti−1 <

s < ti , let Pn f (s) be the polynomial of degree � d that interpolates f at the points{
τi, j | 0 � j � d

}
. If η0 = 0 and ηd = 1, then the function Pn f (s) is continuous on
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[0, 1]; otherwise, it is discontinuous at the breakpoints in Mn . For the former case, Pn

is a projection on C[0, 1]; and in the latter case, it can be extended to be a projection on
L∞(0, 1), in the same manner as is discussed following Lemma 1. Proceed exactly the
same in defining a set of interpolatory node points over Γi , and also define Pn in the same
manner. We will use Pn to refer to the interpolatory approximation over both Γo and Γi , so
long as there is no confusion.

The collocation approximation method for solving (1), u − Ku = E , is

un − PnKun = Pn E . (35)

If it is known that (I − PnK)−1 exists, then the error satisfies

u − un = (I − PnK)−1 (I − Pn) u. (36)

For the error in the interpolatory approximation of u(r(s)), we need the following lemma
and corollary.

LEMMA 4 Let d � 0 be an integer, and assume v ∈ Cd [a, b] and v(d+1) ∈ L1(a, b). Let
d + 1 nodes be given in [0, 1] as in (33). Define d + 1 interpolation nodes on [a, b] by

τk = a + ηk(b − a), k = 0, 1, ..., d (37)

and let Pdv denote the polynomial of degree � d that interpolates v at these nodes. Then

‖v − Pdv‖∞ � cd hd
∥∥v(d+1)

∥∥
1 (38)

where h = b − a.

Proof. This is slightly stronger than the standard interpolation error result which assumes
v ∈ Cd+1[a, b]. To prove it, use the Peano kernel formulation for the interpolation error to
write

v(s) − Pdv(s) =
∫ b

a
Kd(s, t)v(d+1)(t) dt, (39)

Kd(s, t) = 1

d!
[pt (s) − (Pd pt ) (σ )] ,

pt (σ ) =
{

(σ − t)d , σ � t,
0, σ < t.

If we write s = a + ξh and use the definition (37), then we can use a change of variables
to show

v(s) − Pdv(s) = hd+1
∫ 1

0
K̃d(ξ, ζ )v(d+1)(a + ζh) dζ, (40)
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K̃d(ξ, ζ ) = 1

d!

[
pζ (ξ) − (

P̃d pζ

)
(ξ)

]
,

where P̃d denotes interpolation at the nodes of (33). For a given set of points (33) and for
d > 0, it is straightforward to see that K̃d(ξ, ζ ) is a continuous function of ξ, ζ ∈ [0, 1],
and therefore it is bounded on [0, 1], say by a constant cd . It can be shown directly for
d = 0 that K̃d(ξ, ζ ) is bounded.

Take absolute values in (40) and use

h
∫ 1

0

∣∣∣v(d+1)(a + ζh)

∣∣∣ dζ =
∫ b

a

∣∣∣v(d+1)(t)
∣∣∣ dt.

This completes the proof of (38). ✷

COROLLARY 5 Assume v(d+1)(s) exists except on a set of measure zero, say S, and∥∥v(d+1)
∥∥∞ ≡ sup

s∈[a,b]\S

∣∣v(d+1)(s)
∣∣ < ∞.

Then

‖v − Pdv‖∞ � cd hd+1
∥∥v(d+1)

∥∥∞. (41)

Proof. Use (38) and ∥∥v(d+1)
∥∥

1 � h
∥∥v(d+1)

∥∥∞.

✷

Using this corollary, and recalling the assumption that Mn contains the points {σi } as
discussed following (32), we can obtain a rate of convergence for Pnu to u. Assuming
v ≡ u ◦ r ∈ Cd [0, 1] for both Γo and Γi , and assuming v(d+1) is bounded, we obtain

‖v − Pnv‖∞ � cd hd+1
∥∥v(d+1)

∥∥∞. (42)

5.1 Effects due to corners

Except for the effects examined in §4, the above would be a nearly complete convergence
analysis. However, the presence of corners has two consequences. First, the behaviour of u
around corner points, given in (27), requires a ‘graded mesh’ {ti } for {r (ti )} in the vicinity
of the corners of Γ in order to accurately approximate u. Second, the integral operator
K is not compact, as noted following (26), making more difficult the demonstration of
solvability and stability for (35), i.e. showing existence and uniform boundedness of
(I − PnK)−1 for all sufficiently large n. This stability is needed in (36), to obtain bounds
on the rate of convergence.

It was shown in §4 that the operator K behaves like a Mellin convolution integral
operator. A convergence theory for collocation methods of this kind has been given by
Chandler & Graham (1988), and we apply their work to the planar radiosity equation. To
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do so, we return to the notation of §4. In particular, we look at the use of the collocation
method for solving (23),

v±(x) ∓
∫ 1

0
k

( x

r

)
v±(r)

dr

r
= E±(x), 0 < x � 1. (43)

We refer to this generically as

v − Lv = E (44)

with L a Mellin convolution integral operator. With such Mellin convolution integral
equations, we must be more specific as to the meshes {ti }.

For a power q � 1 and a mesh parameter m, define a set of breakpoints on [0, 1] by

ti =
(

i

m

)q

, i = 0, 1, ..., m. (45)

When applied to points of the original boundary Γ , the mesh parameter m will be an
approximately fixed fraction of n, the number of subdivisions of Γ . The exponent q is
called the ‘grading parameter’, and as it increases, the nodes {ti } are clustered increasingly
around s = 0. We proceed as before in defining interpolation nodes, as in (34); we also
define the piecewise interpolatory projection operator Pm as before. Figure 8 illustrates
the increased grading of the mesh when q is increased, for m = 4, 8, 16. In fact,
some of the breakpoints become visually indistinguishable for even such small values
of m. Nonetheless, such graded meshes are important in obtaining maximal orders of
convergence in our collocation method.

Consider functions v ∈ C[0, 1] of the form

v(s) = v0 + α(s) sγ , s � 0 (46)

with γ > 0 and α(s) a function with many continuous derivatives on [0, 1], α(0) �= 0. In
order to approximate such functions v accurately, we must use a suitably large grading
parameter q . A review of results on such ‘graded mesh approximations’ is given in
Atkinson (1997, p 128), and we quote from those results.

Let d and γ be given. Then for m � 1, choose q to satisfy

q � max

{
1,

d + 1

γ

}
. (47)

With such a choice,

‖v − Pmv‖∞ � c

md+1
(48)

for some constant c.
The collocation method for solving (44) is

vm − PmLvm = Pm E . (49)
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q=1    m=4 q=1    m=8 q=1    m=16

q=2    m=4 q=2    m=8 q=2    m=16

q=3    m=4 q=3    m=8 q=3    m=16

FIG. 8. The graded meshes of (45) for q = 1, 2, 3 and m = 4, 8, 16.

The stability and convergence analysis of Chandler & Graham (1988) requires a special
modification of the interpolatory operator Pm . Let i∗ � 0 be given, independent of m. For
interpolation of v ∈ C[0, 1] on the intervals

[
ti−1, ti

]
, i � i∗, define

Pmv(s) = v
(

1
2 (ti−1 + ti )

)
, ti−1 < s < ti . (50)

On the remaining subintervals
[
ti−1, ti

]
, define Pmv as before.

Recall from (31) the exponent α1. With this exponent γ = α1, the Mellin operator L
can be shown to satisfy the hypotheses of Chandler & Graham (1988, Thm 6) when the
grading parameter q satisfies (47). It follows from Chandler & Graham (1988, Thm 6)
that there is some i∗ � 0 for which (I − PmL)−1 exists and is uniformly bounded for all
sufficiently large m, say m � m0. Moreover,

‖v − vm‖∞ � c

md+1
, m � m0 (51)

for some constant c > 0. It is not known how to choose i∗, so one usually starts with i∗ = 0
and see if that works (and it usually does).

5.2 Defining the breakpoints

If r(s) is a corner of Γ , then the mesh needs to be defined according to the above with the
choice of γ = α1 for that corner. Next, suppose one is at a point r(s∗) at which

d

ds
[u(r(s))]

is discontinuous due to r(ao,o(s∗)), r(bo,o(s∗)), or some other analogous point being a
corner of Γ (as explored earlier in §3). Then u(r(s)) will have a behaviour (46) with
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γ = α1 + 1, with α1 associated with the corner in question. Then the mesh needs to be
graded about such a point s∗ to reflect this behaviour in the solution u(r(s)). Such points
are illustrated in Fig. 2 with the symbols ‘✷’, ‘�’, and ‘�’. This continues to the other
points s at which the higher derivatives

dk

dsk [u(r(s))] , k = 1, ..., d

are discontinuous, with correspondingly higher values of γ = α1 + k. Our numerical
examples are for collocation with piecewise constant functions, implying d = 0, and we
consider as singular points only those points s at which u(r(s)) or its first derivative are
discontinuous.

We now describe approximately our method for defining the mesh for dividing a curve
C , say Γo or Γi . We choose an integer nC which will be doubled successively to obtain
increasing accuracy. Let s = α and s = β correspond to successive points of possible
singularity in u(r(s)) on C , say corresponding to the points of discontinuity of [u(r(s))]′
illustrated in Fig. 2. Then we assign the number of breakpoint subdivisions of [α, β] to be
approximately

(β − α)
nC

|C |
where the length of C is denoted by |C |, with a minimum of 4 such subdivisions in every
case. We let n denote the total number of mesh subdivisions for all parts of Γ . This mesh
will be graded in accordance with (45) and (47).

5.3 Superconvergence

In Chandler & Graham (1988, Thm 6), it is also demonstrated that superconvergence
results are possible at the collocation node points. Assume the mesh grading parameter
is chosen sufficiently large,

q > max

{
1,

2 (d + 1)

γ

}
. (52)

Also, let the points {ηj } of (33) be chosen as the Gauss–Legendre zeros of order d + 1
relative to [0, 1]. Then the result (51) can be improved to

max
τi, j

∣∣v(τi, j ) − vm(τi, j )
∣∣ � c

m2(d+1)
, m � m0 (53)

for the error at the collocation node points of (34).
For the case of d = 0, the superconvergent collocation method is simply based

on piecewise constant interpolation at the midpoint of each subinterval [ti−1, ti ]. The
condition (52) becomes

q > max

{
1,

2

γ

}
. (54)
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This is illustrated in the next section. The convergence results of (51) and (53) are
respectively

‖v − vm‖∞ � c

m
, m � m0, (55)

Em ≡ max
τj

∣∣v(τi, j ) − vm(τi, j )
∣∣ � c

m2
, m � m0. (56)

The result (55) could have been proven directly without the theory of Chandler &
Graham (1988, Thm 6). The stability of the numerical method follows easily, as ‖Pm‖ = 1
and therefore

‖PmK‖ � ‖K‖
� ‖ρ‖∞ < 1.

The geometric series theorem then implies the stability result∥∥ (I − PmK)−1
∥∥∞ � 1

1 − ‖K‖ .

The convergence result (55) is then straightforward from (36), provided that the mesh is
sufficiently graded relative to the regularity of the radiosity solution. But the improved
superconvergence result (56) requires the results of Chandler & Graham (1988, Thm 6).

6. Numerical examples

All of our numerical examples are for the boundary Γ of Fig. 2, and the collocation
integrals are all evaluated analytically, to give the exact integrals in all cases. For all cases,
we defined the inner boundary using a = 0.5, and for the reflectivity, we used ρ(P) ≡ 0.9,
over both Γo and Γi . We begin with an illustration of the possible behaviour of the radiosity
solution. Define the emissivity function by

E(x, y) =
{

2 + x + y, (x, y) ∈ Γo,

0, (x, y) ∈ Γi .
(57)

The resulting radiosity over Γo is shown in Fig. 9.
Note first the discontinuities at s = 1

4 , 3
4 , corresponding to the corners of Γo at

(−1, 1) and (1, −1). There are no discontinuities at the other two corners due to symmetry
considerations. Recall that the continuity of u(ro(s)) was discussed in the second paragraph
of §3.1. Also in Fig. 9, there appear to be power singularities at s = 0 and 1

2 .
As a second example, define the emissivity by

E(ri (s)) ≡ 0, E(ro(s)) =
 25s

(
1
4 − s

)
, 0 � s � 1

4 ,

0, 1
4 � s � 1.

(58)

Thus only the top edge of Fig. 2 shows any emission of light; and the emissivity is
continuous over Γ . The resulting radiosity over Γo is shown in Fig. 10. With reference
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FIG. 9. Radiosity for emissivity E = 2 + x + y on Γo, with a = 0.5 and ρ ≡ 0.9.
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FIG. 10. Radiosity for emissivity of (58), with a = 0.5 and ρ ≡ 0.9.

to Fig. 2, the points ‘♦’ and ‘✷’ are indicated by the dotted vertical lines, and the points
‘�’ are indicated by the chain vertical lines.

Note the discontinuities at s = 1
2 , 3

4 , and that there appear to be discontinuities in
(u(ro(s)))′ at other points. The solution u(ro(s)) appears to have a power-type singularity,
as in (46), at s = 1

4 + 0 and s = 1 − 0, meaning to the right of s = 1
4 and to the left of
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FIG. 11. Radiosity for emissivity of (59), with a = 0.5 and ρ ≡ 0.9.

s = 1. Using an empirical fit to the data, the power singularity appears to have the form

u(ro(s)) ≈ 0.412 + 1.331
(

s − 1
4

)0.588
, s > 1

4

with s close to 1
4 . Note the close agreement to the exponent value given in Table 1. There

are clear discontinuities in (u(ro(s)))′ at the points s = 0.5625, 0.6875, which are points
denoted ‘�’ in Fig. 2. Visually, it appears that the derivative is also discontinuous at other
points as well, including at some points of type ‘♦’ and ‘✷’.

A third example is given in Fig. 11 for the emissivity

E(ri (s)) ≡ 0, E(ro(s)) =
{

1, 0 � s � 1
4 ,

0, 1
4 � s � 1.

(59)

Our numerical examples are just for the midpoint collocation method using piecewise
constant functions, discussed at the end of §5. We begin with the case of a known radiosity
solution,

u(x, y) = 2 + x + y,

with the emissivity E = u − Ku and Ku produced by analytical integration. Table 2
contains results for varying values of the grading parameter q. With a right angle, the value
of γ = 0.582 is the likely singularity in the power singularity of (46) for most radiosity
solutions, although in the present case we have a smooth solution. In Table 2, no and ni

are the number of breakpoint subdivisions of Γo and Γi , respectively, and n = no + ni is
the order of the linear system associated with the collocation method. The linear system
was solved directly using Gaussian elimination. The quantity labeled EOC denotes the
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TABLE 2
Rates of convergence

En

no ni q = 1 E OC q = 3
2 E OC q = 2 E OC

88 16 1.087E−2 1.326E−2 1.643E−2
168 32 3.051E−3 1.83 3.700E−3 1.84 4.406E−3 2.02
320 64 1.000E−3 1.61 1.130E−3 1.71 1.109E−3 1.99
648 128 3.634E−4 1.46 3.483E−4 1.70 2.882E−4 1.94

1280 256 1.487E−4 1.29 1.104E−4 1.66 7.344E−5 1.97

‘estimated order of convergence’. In our case, since we are approximately doubling n, we
use

E OC = log En − log E2n

log 2
.

Based on (56), we would like to have E OC
.= 2.0.

A more accurate estimate can be found by comparing log n to log En . In the plots of
log n versus log En for the data of the table, both of the cases q = 3

2 and q = 2 show a
strong linear relationship, meaning

En
.= cqn−pq .

Using this linear relationship for the cases q = 3
2 and q = 2, the respective limiting values

of pq appear to be approximately 1.68 and 2.00. For q = 1, a limiting behaviour is not
apparent, but we hypothesize that p1

.= 1 for sufficiently large values of n.

6.1 Interpolation of the collocation solution

Assuming we have used a properly graded mesh, we have second-order convergence of
(56). In extending the solution to other points, what form of interpolation should be used?
We have used linear interpolation of the collocation solution, but without interpolating
across the corner points of the boundary. When very near to a corner, say at s = s∗ near to
a corner parameter, choose the two collocation points nearest to s∗ that are on the same side
of the corner as s∗. Again use linear interpolation based on these two collocation points,
extrapolating to obtain the value at s∗. We chose approximately 4000 uniformly spaced
points in [0, 1], interpolating at these points the collocation solutions for

no = (88, 168, 320, 648, 1280), ni = (16, 32, 64, 128, 256)

and n = no + ni . We then differenced successive interpolated solutions, calculating
un2 − un1 with n1 < n2 denoting successive values of n. This gives some sense of the
error in the computed solutions.

We present results for the radiosity solution with emissivity (58). In Fig. 12, we show
the difference un2 −un1 of the interpolated solutions for the cases n1 = 776 and n2 = 1536,
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FIG. 12. Difference of interpolated solutions for emissivity (58).

TABLE 3
Norms of differences of successive interpolated solutions

Mn

n q = 1 E OC q = 2 E OC q = 10
3 E OC

200 2.80E−2 3.01E−2 3.41E−2
384 1.05E−2 1.4 6.46E−3 2.2 5.49E−3 2.63
776 6.04E−3 0.8 8.67E−4 2.9 1.46E−3 1.91

1536 3.43E−3 0.8 3.87E−4 1.2 3.77E−4 1.95

with grading parameter q = 2 around each corner. We have also included the vertical lines
given earlier in Fig. 10, marking the points of possible discontinuity in the first derivative of
the radiosity solution. Note the occasionally much larger values of the difference function.
These occur at corner points and at the points noted by the dotted vertical lines. The error
at the power singularity is especially large, indicating that linear interpolation should not
be used for such functions. Clearly a better form of interpolation is needed around all such
points.

In Table 3 we give the maximums of these differences for various values of q. For
notation, we use

Mn =
∥∥∥un − u 1

2 n

∥∥∥∞
based on the differences at the 4000 interpolated values of the computed radiosity solutions.
The use of a graded mesh does improve the rate of convergence, but the rate is still not all
that good. The reason is due to our use of linear interpolation. As is indicated by Fig. 12,
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the error at most points is much smaller than that suggested by the values in Table 3.
Consistent with (54), we include the choice of q = 10

3 . Empirically, we have an order of
convergence consistent with the theoretically desirable rate of O(n−2) of (56).
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