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CONVERGENCE RATES FOR APPROXIMATE EIGENVALUES OF
COMPACT INTEGRAL OPERATORS*

KENDALL ATKINSON{t

Abstract. Let " be an integral operator and {J,} a sequence of numerical intsgral operators
approximating ). Let 1, #°0 be an eigenvalue of /" of multiplicity m and index v, and let o, be the
eigenvalues of J¢, within some small fixed neighborhood of A,. Then for some ¢ > 0 and all sufficiently
large n,

14— ol £ cmax {|H'¢; ~ Hpill 'l < i < m}
for all Ae g,. The set {¢,, ---, ¢,,} is a basis for null (4, — K)".

1. Introduction. We shall consider the eigenvalue problem for the compact
integral operator

(L.1) A x(s) = f K(s, t)x(t) dt, seD, xeC(D),
D

with D a closed, bounded region in R™, m = 1. The use of numerical integration
to approximate  x leads to the sequence of operators

(1.2) Hox(s) = 2 W as)X(t;0), seD, xeC(D),
j=1
with all ¢; , € D and appropriate weights w; ,(s).
For A # 0, the eigenvalue problem for .7,

(1.3) Ax, = HpXp, - oon=x1,

can be reduced to an equivalent finite-dimensional eigenvalue problem,

(14) ),X,,(Ii,n) = Z Wj,n(ti,n)x(tj,n)’ i= 1’ cee, N
j=1

The equivalence is accomplished by using (1.3) as an interpolation formula for the
solution of (1.4); this idea is due originally to Nystrom [11].

Let 4, # 0 be an eigenvalue of 7, and let ¢ > 0 be less than the distance from
Ao to the remaining part of the spectrum of £ Let o, denote the set of eigenvalues
of A, which are within ¢ of 1,. In [4] it was shown that for all sufficiently large n,
the sum of the multiplicities of the eigenvalues in ¢, equals the multiplicity of 4,,
and the elements of g, all converge to A,

(1.5) max|A — Ay >0 asn— 0.

Aean

There were also results on the rates of convergence for the associated eigenfunctions.
The major result of the present paper is a bound on the rate of convergence in
(1.5) in terms of the quadrature error for the approximation (1.2).

* Received by the editors August 21, 1973, and in revised form April 13, 1974.
t Department of Mathematics, University of lowa, lowa City, lowa 52242.
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214 KENDALL ATKINSON

For an abstract framework for (1.1)—(1.3), we use the hypotheses of Anselone
and Moore [1], [2].

Al. X and %, n = 1, are linear operators on the Banach space X into
itself.

A2. A x - A xasn— oo, forall xeX.

A3. The family {#|n = 1} is collectively compact, ie., {#,x|n =1 and
x|l < 1} has compact closure in X.

For a review of the resulting theory, see [1], [2], [5].

THEOREM. Assume A1-A3. Let A, # 0 be an eigenvalue of A~ of index v, i.e.,v
is the smallest integer for which

null (1, — X)") = null (A, — A1),
Then for some constant ¢ > 0 and for all sufficiently large n,

(1.6) max |2, — Al < ¢ max | Ao — Aol ",

where {@y, -+, @n} is a basis for null (A — A)").

Some preliminary lemmas for eigenvalues of matrices are given in § 2. The
theorem is proved in § 3, and some consequences of it are discussed.

Previous convergence results have restricted £ to be self-adjoint or normal,
e.g., [6],[7],[10], [12], [13]. Also, the kernel function was assumed to be smooth
and there were some limitations on the quadrature formula. But dur result (1.6)
does not give a constructive bound, in contrast with some of the earlier work.

2. Preliminary lemmas on matrices.
LEMMA 1. Let A and B be square matrices of order m, and assume

@1 |4, < By, ij=1,-,m.
Then

22 ro(4) < 14(B),

where 1,(A) is the spectral radius of A, i.e., the maximum of the moduli of the eigen-
values of A.

Proof. Introduce the operator matrix norm

| 4]l = max 214,
J

which is induced by the vector norm | x| = max |x;|. Then from [8, p. 567],

(2.3) r(A) = lim | A"||*".
From (2.1) it follows easily that

|(Ar)ij| é (Br)ij, l,] = 15 ’ m, r 2 1
Thus

47 = 1Bl rz1l,

and (2.2) follows from (2.3).
LEMMA 2. Let A be a square matrix of order m, and let it have the single eigen-
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value Ay of multiplicity m and index v. Let {A,ln = 1} be a sequence of m x m
matrices for which

(2.4 |A— A, -0 asn— o,
for some matrix norm. Then

2.5) max |do — A < ¢4 — 4,1, nzl,

Aea(An)

for some ¢ > 0. The notation a(A,) is the set of all eigenvalues of A,.

Proof. Without loss of generality, we assume A is in Jordan canonical form.
Otherwise, for some nonsingular P, P~ 4P = J is in canonical form, and P~ '4,P
= J, will still be close to J,

17 = Tl S IPHIPTHIIA — A,

Also, o(J,) = a(A,) because 4, and J, are similar.
Write A = 4,I + U, with U a matrix whose superdiagonal is all zeros and
ones with all other elements equal to zero. Define E, = 4, — A. We wish to solve

0 = det(4, — AI) =det (U + E, — (A — Ap)I).
To bound 4 — 1,4, we want to bound the eigenvalues of U + E,. Define

5n = max I(En)u|
i

Using Lemma 1, we have
rU + E) = r, (U + §,K),

with K the m x m matrix every element of which is one.

We shall bound the eigenvalues of U + J,K. At this point, we could cite
[14, p. 81] to conclude the proof. But the following derivation, together with the
above, is a shorter proof of that result, and thus is of some interest in itself. Let

Jy o010 - 0
J, 0 0 1.0 0
U= , J;, = )
: o1
J, [\ R "0

with U of order m and J; of order v;. By hypothesis,
maxv; =v = 1.
Let
e=(1,1,---, )T eR™.
Then
(U + 6,K)x = Ax, xeR™, x#0,
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implies

(2.6) Ux + §,Se = ix,

S = x,-.

-~ =

Forv =1, U = 0; and it follows easily that
o(U + 6,K) = {0,md,},

from which (2.5) follows.
For v > 1, use partitioned matrices to write
x = (P, ... xM)T, xU e RY.
From (2.6),
(27) Jix(i) + 5nS e(i) = /lx(i), i= 1’ <o LT
In system form,
(28) xf-}—l-"(snsz’lxl(f)a l=1a25"'avi_l,
8,8 = AxY, i=1,---,r.

For S =0, (2.8) implies A = 0. If also r = 2, then S = 0 can be satisfied with
x # 0 R™ and A = 0 will be an eigenvalue of U + J,K.

For S # 0, (2.8) implies A # 0. We first show that A = 1 is not possible for all
sufficiently large n. If A = 1, then solving (2.8) yields

xl(i)=(vi+l_l)5ns’ lélévi’ i:l,---,r.
Summing over [, we obtain
oo (v + 1
S;= 3 X = v—'(i;—la,,s.

1=1

Summing over i and cancelling S, we have

1 = EZ vi(v,- + 1)
279

But as §, — 0, this cannot be satisfied. For the remainder of the proof we can

assume 4 # 1.
From (2.8) with S; defined as above,

S; — xP + v,6,8 = 1S;, i=1,---,r,
and summing over i, we obtain
(2.9) x4+ xP + o+ xP =[1 - A+ mé,]S.
Solving in (2.8) for x{, we obtain

1 — A"
-

AxP = 6,8
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Dividing by A", summing over i, substituting into (2.9), and then multiplying by
A’, we obtain that 4 must satisfy the polynomial equation

s 1 — A
(2.10) — 4 21+ md,) — 5nz/1v-w( 1 /1) =0.
4 -

The last term has degree v — 1. Since one root of (2.10) is A = 1, we can divide by
A — 1 to obtain
(2.11) — A"+ d,q9(4) =0,

with g(4) a polynomial of degree v — 1.
Since the roots A(d,) of (2.11) will be continuous functions of J, [9, p. 136],
we can assume that for some B, > 0,

Ij’(an)l é Bl’ |5n| § 19
for all the roots of (2.11). Using this in (2.11), we have B, > 0 with
M(an)lv é 32511’

which completl:s the proof of (2.5), for all sufficiently large n. It can be made true
for all n by merely making the bound B, larger.

3. Rates of convergence for approximate eigenvalues. We begin by proving
the theorem stated in § 1. Let A, # 0 be an eigenvalue of 4~ of index v = 1 and
multiplicity m = v. Let ¢ > 0 be less than the distance from 4, to the remainder of
a(A"), the spectrum of . Associated with the eigenspace

X(Ap) = null (A, — H)"
is the projection operator

E(AO,X)=L,J A—H)"1da
270 J)- 2] =
which maps X onto X(4,); the finite-dimensional space X(4,) of dimension m
is invariant under £ See [8, pp. 566-580] for a complete treatment of the operator
calculus for compact operators.

From [4], the set o, of eigenvalues of 7, which are within ¢ of 1, will equal m
in the sum of their multiplicities, for all sufficiently large n = N. Moreover, we
can define the projection operator

1
E(o,, #) = —.f (A — H) ' da, nzN.
27Il A= Aol =¢

Its range is
X(0,) = null (A; — £,)"* @ --- @ null (4, — H;)"*",
with
O = {415+ s e
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and where v(4;) denotes the index of A;. Then there is a constant ¢ > 0 with
(31) ”x - E(an’ an)x” é c”x”prn xeX(AO)’ n g N5
pn = max {||(#" — A)A |, |(A — A)A}-

From A1-A3, p, — 0 as n — o0, and its size is related to the quadrature error in
(1.2); see [1], [5]. In addition, the family {E(q,, #,)ln = N} is uniformly bounded.

Consider E(o,, #,) as an operator restricted to X(4,) into X(o,). We shall
show it is invertible. Define S,,: X(1,) — X(4o),

(3.2) S,x = x — E(Ay, X )E(0,, A,)x, x € X(Ao).
Then
ISwxll = 1 E(Ro, K Ix — Elo,, A)xll

= cllE(o, X))l pall x|l -
Regarded as an operator from X(4,) to X(4,),
(3.3) IS, >0 asn— 0.
As a consequence,

(I = S»)™ 1 X(4) = X(4o)
exists and is uniformly bounded for all sufficiently large n. Then the operator

E(o,, #,)" ' = (I = S,)"'E(4o, A)

is easily shown to be the inverse of E(c,, #;) X(4,), and moreover, it is uniformly
bounded for all large n.
Define #,,: X(4o) — X(4o) by

Hyx = E(o,, Ay) ' H,E(0,, A )X, x € X(Ao).

The spectrum of 17,; on X(4,) is the same as that of 7, on X(g,), namely o,. Now
consider 4" and %, on X(4o) to X(4o). Let {@, ---, @,} be a basis for X(4,).
For x € X(4,),

m
X = Zai(pi’
1

| x — x| < (Z Iail) max [[(# — Aol
1 i

Since

Ixll, = Y loul, x € X(o),

1

is a norm on X(4,), and since all norms on a finite-dimensional space are equiva-
lent [9, p. 7], there is ¢ > 0 with

Ixl < clixll.
Thus
(3.4) |#x — Axll < clix|| max | o; — Hoil.
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For each z € X(4,),
1z — Azl < |Eo,, #;) 72| | E0,, #)H z — H;E(o,, K)z] .
Since E(a,, #,) and &, commute on X, we can obtain
1z — Azl < | E(0n, H) " | |1 ECopy H) |2 — Hiz]].
Apply this to (3.4) to get
14 x — Apx|l < cllx]| max | o; — Aol x € XlA).
for all sufficiently large n. With respect to X(4,),
(3.5) |1 = Al < e max | H o; — Aol

To complete the proof of the theorem, take a basis for X(4,) and reduce the
restrictions to X(4o) of #” and 7, to matrix equivalents A and 4,, respectively, of
order m. It is straightforward that

14 — Al < csll# = A,

which can be combined with (3.5) to bound |4 — 4,]|. Invoke Lemma 2 to com-
plete the proof.

The bound in (1.6) or (3.5) can be replaced by one involving ||(# — A)A |,
although the rate of convergence may not be as great. To see this, let z € X(4,).
Then

(Ao — A)z =0,
and z can be written as z = %z, with % bounded. Then
1A — Azl < (A = )AL Izl
Thus (1.6) becomes

(3.6) max |do — 4| < ¢s|(AH" — A)A| T

for all large n and an appropriate constant c5.
To apply these results to integral operators, consider first the case where D
is a closed, bounded subset of R% g = 1, and K(s, t) is a continuous function for

s,t € D. Define £ by (1.1). Suppose

(3.7) fofa) dt xS wy f(t,)
1

is a convergent numerical integration method for all '€ C(D). Define J,,n = 1,
by

A x(s) = i w;aK(s, t; )x(t; ), x € C(D).
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Then A1-A3 will be satisfied (e.g., see [1],[5]), and Theorem I can be applied to
the eigenvalues of ¢ and .#,. For the rate of convergence (1.6),

|4 ¢; — Huoll = max

j Kis, )oi0) di
(3.8) °

ZW KS tj’l)(pl(_]n)

The rates of convergence given in earlier papers for self-adjoint and normal
operators follow easily by noting that v = 1 for such operators. The above result
is slightly more general for such operators since the weights w; , are not restricted
to being positive as in all earlier results.

For self-adjoint operators whose kernels have a weak singularity, e.g., an
algebraic or logarithmic singularity,

l q

loglls — t| or T s,teR?, a<gq,
earlier results no longer apply. For such cases, product integration must be used to
treat the singularity in order to obtain a good approximation to J x. But in such
a case, the equivalent linear system (1.4) can no longer be converted by a similarity
transformation to a symmetric system in any obvious way, and this was essential
to earlier work. By (1.6), the rate of convergence will still depend linearly on the
quadrature error since v = 1 ; formula (3.8) will be replaced by the error formula
for product integration.

Although we are mainly interested in the case with .#; defined by numerical
integration, the analysis applies equally well to cases where (i) ¥, is compact and
of finite rank, n = 1, and (ii) |4~ — ;| — 0 as n — 0. It then follows fairly easily
that A1-A3 are then satisfied. The main applications are (i) defining .#, by using
a degenerate kernel approximation K,(s, t) to K(s, t), and (ii) projection methods,
e.g., Galerkin’s method and the collocation method. See [5] for the associated
theory for the approximate solution of nonhomogeneous Fredholm equations.
In such cases, the bounds in (1.6) and (3.6) can be replaced by | ¥~ — X,]|, although
(1.6) may still give a better result.

By specializing #" and ¢, to matrices on R?for some g > 1, we obtain another
interesting corollary. Let A be a matrix of order g, with eigenvalues A, -, 4,
of index v,, - - -, v,, respectively. Let 4, be a sequence of matrices for which

4 - A, - 0.
Pick ¢ > 0 small enough to make the circles of radius ¢ about 4, - - - , 4, pairwise
disjoint. Let g, ; be the eigenvalues of 4, within ¢ of 4;, j=1,---,r. Then for

all sufficiently large n, the number of eigenvalues in g, ;, counted according to
their multiplicity, will equal the multiplicity of Z;. Moreover, there is a ¢ > 0
such that

(3.9) max |2, — 4 < ¢4 — 4, j=1,2,,r

Aeon, j

The proof is immediate from the theorem, as longas A = Qis not an eigenvalue of A.
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If it is, then use the perturbed matrices
ol + A, ol + A,
with a > ||A||. The differences of the eigenvalues will remain unchanged, and

zero will no longer be an eigenvalue.
To see that (3.9), and thus (1.6), is best possible, use

110 - 0] 110 - 0]
0110 -0 0110
e o Lo

1 1

[0 e 1] [1/nQ -ooeeeee 1_

in which 4 and A, are order g x gq. Then
A — A, =1/n, v=gq,
and the characteristic equation is

(A=1)y=1/n.
Thus
max Ao — Al = (1/n)4 = |4 — 4, '".

Aean

Note added in proof. Following submission of this paper, the author became
aware of the two related papers [15] and [16].
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