
A Discrete Galerkin Method for a Hypersingular

Boundary Integral Equation

David Da�Kwun Chien
Math Program
CSU San Marcos
San Marcos� CA�����

Kendall Atkinson
Math Dept�
University of Iowa
Iowa City� IA �����

April 	�� 	���

Abstract

Consider solving the interior Neumann problem

�u�P � � �� P � D

�u�P �

�nP
� f�P �� P � S

with D a simply�connected planar region and S � �D a smooth curve� A double layer

potential is used to represent the solution� and it leads to the problem of solving a

hypersingular integral equation� This integral equation is reformulated as a Cauchy

singular integral equation� A discrete Galerkin method with trigonometric polynomials

is then given for its solution� An error analysis is given� and numerical examples

complete the paper�
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� INTRODUCTION �

� Introduction

Let D be a bounded open simply
connected region in the plane� and let its boundary S be

su�ciently smooth� Consider the Neumann problem� Find u � C��D��C��D� that satis�es

�u�P � � �� P � D

�u�P �

�nP

� f�P �� P � S �
�
�

with f � C�S� a given boundary function�

One way of solving this problem is to express the solution u as a double layer potential�

u�A� �
Z
S
��Q�

�

�nQ
log j A�Q j dSQ� A � D �
���

The function � is called a double layer density function or a dipole density function� Form

the derivative of u�A� in the direction nP � the inner normal to the boundary S at P � and

take the limit as A� P � thus obtaining the normal derivative� For the Neumann problem�

this leads to

f�P � �
�u�P �

�nP

�
�	�

� lim
A�P

nP � rA

Z
S
��Q�

�

�nQ
log j A�Q j dSQ� P � S �
���

The integral operator is often referred to as hypersingular� and we are looking for the density

function �� For some discussion of this for S � U the unit circle� see Atkinson ��� x��	����

Section � gives preliminary information on integral equations for S � U the unit circle�

and Section 	 relates the hypersingular integral operator to other potential representations�

Section � gives a reformulation of the integral equation� Section � gives the numerical

method and Section � gives numerical examples� The numerical method is based on using
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trigonometric approximations of the unknown density function� and we give what can be

regarded as either a discrete Galerkin method or a discrete collocation method�

The general idea of using an approximation scheme using trigonometric approximations

is quite old� An early use of this is given in Gabdulhaev ���� Work from more recent years

is given by Amosov �	�� Atkinson ���� Atkinson and Sloan ���� Mclean �
��� and McLean�

Pr�o�dorf� and Wendland �
	�� Other approaches to the solution of the hypersingular equation

are given in Amini and Maines �
�� ���� Giroire and Nedelec ���� Kress �

�� and Rathsfeld�

Kieser� and Kleemann �
���

� Preliminaries

In this paper� we consider the Neumann problem given in equation �
�
�� LetD be a bounded

open simply
connected region in the plane� and assume its boundary S is su�ciently smooth�

Thus� S has a parameterization

��s� � ���s�� ��s�� � � � s � L ���
�

where s is the arc length coordinate of the point P on S and L is the arc length of S�

Assume ��s� � C���� L� and j���s�j �� � for every s � ��� L�� The normal vector n at P on

S is directed into the interior of the domain D� and we assume the direction of integration

on S to be counterclockwise�

Consider the normal derivative of u�A� in the inner direction to S at P �

�u�P �

�nP
� lim

A�P
nP � rA

Z
S
��Q�

�

�nQ
log j A�Q j dSQ �����

� �

�nP

Z
S
��Q�

�

�nQ

log j P �Q j dSQ ���	�

� H��P �� P � S �����
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The resulting integral contains an integrand with a strongly nonintegrable singularity if the

integral and derivative operators are interchanged� Such integral operators H are often

referred to as hypersingular� and the integrals do not exist in the usual sense�

The hypersingular integral operator is very closely related to the Cauchy singular integral

operator�

C��z� �



��i

Z
S

����

� � z
d� � z � S

where S is the boundary of D� as de�ned before� Properties of Cauchy singular integral

operators can be found in Kress �
�� p� ����

For a function � � L���� ���� we write its Fourier expansion as

��s� �
�X

m���

am	m�s�� 	m�s� �

p
��

eims

am �
Z ��

�
��s�	m�s�ds

For any real number q � �� de�ne Hq���� to be the set of all functions � � L���� ��� for

which

k�kq �

�
���ja�j� �

�X
m���

m���

jmj�qjamj�
�
���
�

�


	

Consider the case in which S�U � the unit circle� We denote the Cauchy singular integral

operator by Cu in this case� and from Henrici ��� p� 
����

Cu � e
ikt �� sign�k� � e

ikt

�
� k � ��

�
�� � � � �����

with sign��� � 
� We can interpret Cu as a operator on Hq����� and

Cu � H
q���� �����

onto
Hq����� q � �
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Consider the same boundary for the hypersingular integral operator� and denote the

latter by Hu in this case� From Atkinson ��� Sec� ��	�� we have

Hu � e
ikt �� �jkjeikt� k � ��

�
�� � � � �����

For � � H����� with � �
P
am	m� introduce the derivative operator D�

D��t� � d��t�

dt
� i

X
m���

mam	m�t�

Regarding the Cauchy singular integral operator Cu as an operator on Hq����� and using

the mapping properties ����� and ������ we have

Hu� � ���iDCu� � ���iCuD�

� Connection With Logarithmic Potential

Consider ��t� as a real function� and assume z does not lie on the boundary S� Introduce

��z� � U�x� y� � iV �x� y� �



��i

Z
S

���� d�

� � z
�	�
�

Substitute

� � z � rei� �	���

where r �j ��z j and � � arg���z�� Taking the logarithmic derivative of �	��� �for variable

� and constant z��

d�

� � z
� d log r � id� �

�
� log r

�s
� i

��

�s

�
ds�

By the Cauchy
Riemann equations� applied to log�� � z� � log r � i�� we have

��

�s
� �� log r

�n
�
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Substituting this into �	�
� and separating real and imaginary parts� we obtain

U�x� y� �



��

Z
S
�d� �




��

Z L

�
�
d�

ds
ds �

�

��

Z L

�
�

�

�n�

log r ds

and

V �x� y� �
�

��

Z
S
�d log r �	�	�

After an integration by parts �assuming that � has an integrable derivative with respect to

s� equation �	�	� can be written as

V �x� y� �



��

Z L

�

d�

ds
log r ds�

These formulae indicate that for real valued densities� the real part of the Cauchy integral

coincides with the double layer potential �
���

u�x� y� �
Z L

�
����s��

�

�n�
log r ds �x� y� � D �	���

where

����s�� � � 


��
��s��

From Kress �
�� p� 
���� we have the following theorem�

Theorem � The double layer potential u with H�older continuous density � can be extended

uniformly H�older continuously from D into D�

Proof� The de�nition of C����S�� the set of all functions which are H�older continuous� can

be found from Kress �
�� p� ���� �

The next theorem gives us the existence and representation of the normal derivative of

the double layer potential u on the boundary S�
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Theorem � The normal derivative of the double layer potential u with density � � C����S�

can be extended uniformly H�older continuously from D to D� The normal derivative is given

by

�u�P �

�nP

�
d

ds�

Z L

�

d�

ds
log j ��s�� ��s�� j ds ��s�� � P � S �	���

Proof� C����S� is the set of all continuously di�erentiable functions � such that �� � C����S��

and recall ��s� from ���
�� a parameterization of S� See the proof in Kress �
�� p� 
��� �

Notice that the right
hand side of the equation �	��� is the tangential derivative of the

simple layer potential V � and from Muskhelishvili �
�� p� 	
�� we have

�u�P �

�nP
�

dV

ds�
�
Z L

�

d�

ds

�

�s�
log j ��s�� ��s�� j ds

� �
Z L

�

d�

ds

���s�� � ���s�� ��s���

j ��s�� ��s�� j� ds �	���

For the Neumann problem �
�
�� the double layer potential

u�A� �
Z
S
��Q�

�

�nQ
log j A�Q j dSQ� A � D �	���

solves the Neumann problem with boundary condition �u
�n � f on S provided the density

� � C����S� solves the integral equation

�

�nP

Z L

�
����s��

�

�n��s�
log j P � ��s� j ds � f�P �� P � S �	���

Theorem � Let f � C����S� satisfy the solvability condition

Z L

�
f ds � ��

The Neumann problem ����� has a solution u of the form ������ with � � C����S�� Two

solutions u can di�er only by a constant� as do two solutions ��
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Proof� See Kress �
�� p� 
��� �

This establishes the solvability of the integral equation �	���� and symbolically we write

this equation as

H� � f�

� Reformulation

With equation �	���� we have

H����s��� � �
Z L

�

d�

ds

���s�� � ���s�� ��s���

j ��s�� ��s�� j� ds ���
�

Change from the variable s to �� with

s �
L�

��
� � � � � ���

and do similarly with s� and ��� Then equation ���
� becomes

H����s��� � � L

��

Z ��

�

���L���� � �
�
��L��� �� ��L���� �

	



��L��� �� ��L��

��
�



�

d�

ds
d� �����

Introduce a function � de�ned on ��� ���� and implicitly on the unit circle U � by

���� � �

�
�

�
L�

��

��
� �s��� �

d

ds
�

�
�

�
L�

��

��
� � � � � ��

The parameterization of the unit circle is

�u��� � �cos���� sin����� � � � � ��

Using these de�nitions� write ����� as

H����� � � L

��

Z ��

�

���L���� � �
�
��L��� �� ��L���� �

	



��L��� �� ��L���� �




� �s��� d�
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� �
Z ��

�

��u���� � ��u��� � �u�����

j�u���� �u����j�
�

�
�� j�u���� �u����j�
��u���� � ��u���� �u�����

���L����
� �
�
��L�

��
�� ��L��

��
�
	




��L�
��
�� ��L��

��
�



�

�
�� ����� d�

� �
Z ��

�

sin�� � ���

��
 � cos�� � ����
�
�
����
 � cos�� � ����

sin�� � ���
�
���L��

��
� �
�
��L�

��
�� ��L��

��
�
	




��L��� � � ��L��
��
�



�

�
�� ����� d�

� ���

L

�Z ��

�

sin�� � ���

��
 � cos�� � ����
����� d� � BD�����

�

�
��

L
�Hu����� � BD������

�
��

L
����iCuD����� � BD������ ���	�

where the kernel B of the integral operator B is

B���� �� � �
�
L

��

�����
��L��

��
� �
�
��L�

��
�� ��L��

��
�
	




��L�
��
�� ��L��

��
�



� � �

L

sin�� � ���

�
� cos�� � ����

�
�� �����

The kernel B���� �� is continuous� and it has periodicity �� for both � and ��� It�s easy to

see B is a periodic function� and we need to show it is continuous when either sin������� �

or ��L��� �� ��L��
��
�� ��

Theorem � Assume ��s� � C���� L�� then the kernel function B���� �� is continuous over

��� ���� ��� ���� and it is periodic with respect to both � and ��� with period ���

Proof� It su�ces to show three cases�

Case �� �� � ��� ��� and �� ���

Note that we drop the coe�cient �L
�� in ����� for convenience and rewrite it as

B���� �� �
���L���� � �

�
��L��� �� ��L���� �

	



��L��� � � ��L��

��
�



� �

�
�

L

�
sin�� � ���


 � cos�� � ���
�����
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�

�
���L��

��
� �
�
��L�

��
�� ��L��

��
�
	




��L�
��
� � ��L��

��
�



� � ��

L�� � ���
�����

��

L

�
sin�� � ���


 � cos�� � ���
� �

� � ��

�
�����

In this proof� we take the advantage of the parameterization � of the boundary S� Since s

is the arc coordinate of the point P on S� we have

j���s��j � 
 and ���s�� � ����s�� � � ���s�� � S

The term ����� approaches � as � approaches ��� For the term ������ we �rst expand � about

���

�

�
L�

��

�
� �

�
L��
��

�
�

L

��
� �
�
L��
��

�
�� � ��� �

�
L

��

��
���
�
L��
��

�
�� � ����

�

where �� is between � and ��� Then

��
�
L��
��

�
�
�
��

L�

��
� � ��

L��
��

�

�
�

L

��
��� ��� �

�
L

��

��
��
�
L��
��

�
� ���

�
L��
��

�
�� � ����

�
�����

and






��L��� �� ��
L��
��

�







�

�
�
L

��

��
�� � ���

� �
�
L

��

��
��
�
L��
��

�
� ���

�
L��
��

�
�� � ���

� � c��� � ���
� �����

where

c� �



�

�
L

��

�� 




���
�
L��
��

�





�

Substituting ����� and ����� to ����� we have

���L���� � �
�
��L��� �� ��L���� �

	



��L��� �� ��L���� �




� � ��

L�� � ���
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�

L

��
�� � ���

�

 �

�
L

��

	
��
�
L��
��

	
� ���

�
L��
��

	
������

�

	
�

L

��

	�
�� � ����

�

 �

�
L

��

	
��
�
L��
��

	
� ���

�
L��
��

	
�� � ��� � c��� � ����

	

� ��

L�� � ���

�
��

L�� � ���



� 
 �

�
L

��

	
��
�
L��
��

	
� � ��

�
L��
��

	
������

�


 �
�
L

��

	
��
�
L��
��

	
� ���

�
L��
��

	
�� � ��� � c��� � ����

� 


�
A

�
��

L



� �

�
L
��

	
��
�
L��
��

	
� ���

�
L��
��

	
�
�
� c��� � ���


 �
�
L

��

	
��
�
L��
��

	
� ���

�
L��
��

	
�� � ��� � c��� � ����

�
A ���
��

Let � � ��� ���
�� becomes

lim
����

��

L



� �

�
L

��

	
� �
�
L��
��

	
� ���

�
L��
��

	
�
� � c��� � ���


 �
�
L
��

	
� �
�
L��
��

	
� ���

�
L��
��

	
�� � ��� � c��� � ����

�
A � �

since

lim
����

��
�
L��
��

�
� ���

�
L��
��

�
� ��

�
L��
��

�
� ���

�
L��
��

�
� �

Thus� B���� �� is continuous over ��� ���� ��� ���� and B � � for �� � � � ��� ����

Case �� �� � �� � � �� and �� ���

The proof of this case is the same as for case 
�

Case �� �� � �� � 
 ��� and � � ���

Since B has period ��� B��� �� � B���� ��� Therefore� let �� � �� and the proof follows

as for the case 
�

This completes the proof that B is continuous over ��� ��� � ��� ���� and B � � for

�� � � � ��� ���� �

Corollary � Assume ��s� � Cn��� L�� then the kernel function B���� �� is n � � times

continuously di�erentiable over ��� ���� ��� ����

Proof� B is expressed in terms of ����� and ������ ����� can be checked easily that it is a very

smooth function� For ������ we examine ���
�� carefully� we can see that the denominator of



� THE NUMERICAL SCHEME 
�

���
�� never equal to zero when � and �� are close to each other� Therefore� ����� is n � �

times continuously di�erentiable if ��s� is n times continuously di�erentiable� �

� The Numerical scheme

We begin by de�ning a Galerkin method for solving the hypersingular integral equation �	���

in the space L���� ���� However� instead of solving equation �	���� we solve the equation

���	��

� ��iCuD����� � BD����� � g���� ���
�

where

g���� � L

��
f���

L��
��

���

Let

���� � D����� �����

We solve ���
� for � � L���� ����

� ��iCu�� B� � g ���	�

FromTheorem 	� this is uniquely solvable on L���� ���� By making the unknown a derivative�

we are decreasing the order of the pseudo
di�erential operator� Also� the �rst term of ���	�

is a Cauchy singular integral operator on the unit circle� and therefor� we can compute it

easily�

The equation ���	� is equivalent to

�� 


��i
C��u B� � � 


��i
C��u g �����

The right side function C��u g is in L���� ���� Because B has a continuous di�erentiable

kernel B� B is a bounded compact operator from Hq���� into Hq������� and C��u B is a
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compact mapping from L���� ��� into L���� ���� Thus� ����� is a Fredholm integral equation

of the second kind� By the earlier assumption on the unique solvability of ���	�� we have�
I � �

��i
C��u B

	��
exists on L���� ��� to L���� ����

Introduce

Xn � span f	�n� � � � � 	�� � � � � 	ng

for a given n � �� and let Pn denote the orthogonal projection of L���� ��� onto Xn� For

� �
P
am	m� we have

Pn���� �
nX

m��n

am	m���

the truncation of the Fourier series for ��

Approximate ���	� by the equation

Pn ����iCu�n � B�n� � Png� �n � Xn �����

Let

�n��� �
nX

m��n

m���

a�n�m 	m���

Note that �n does not have the constant term� i�e�� �n � f�n � X j a�n�� � �g� because �

is the derivative of � �see ������� The equation ����� implies that the coe�cients
n
a�n�m

o
are

determined from the linear system

�sign�k�i�a�n�k �
nX

m��n

m���

a�n�m

Z ��

�

Z ��

�
B���� ��	m���	k���� d� d��

�
Z ��

�
g���	k���� d�� k � 

� � � � �
n �����

Using

PnCu � CuPn� PnC
��
u � C��u Pn�
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the approximating equation ����� is equivalent to

�n � 


��i
PnC

��
u B�n � � 


��i
PnC

��
u g �����

This is simply a standard Galerkin method for solving ������

Since Pn�� �� for all � � L���� ���� and since C��u B is compact� we have

����I �Pn�C
��
u B

��� �� � as n�	

Then by standard arguments� the existence of
�
I � �

��iC
��
u B

	��
implies that of�

I � �
��iPnC

��
u B

	��
exists and is uniformly bounded for all su�ciently large n� and

k�� �nk� �
�����
�
I � 


��i
PnC

��
u B

�������� k��Pn�k�

where k � k� is the norm for H����� � L���� ���� For more detailed bounds on the rate of

convergence� see Atkinson ��� x��	��

k�� �nk� � c

nq
k�kq � � � Hq����

for any q � ��

Generally the integrals in ����� must be evaluated numerically� and therefore we intro


duce a discrete Galerkin method� We give a numerical method which amounts to using the

trapezoidal rule to numerically integrate the integrals in ������ Introduce the discrete inner

product

�f� g�n � h
�nX
j��

f�tj�g�tj�� f� g � Cp���� �����

with h � ��
��n � 
�� and tj � jh� j � �� 
� � � � � �n�� and note ��� ��n is only semi
de�nite�

This is the trapezoidal rule with �n�
 subdivisions of the integration interval ��� ���� because

the integrand is ��
periodic� and ��� ��n is a true inner product on the set of all trigonometric
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polynomials of degree less than or equal to n� Also� approximate the integral operator B of

����� by

Bn����� � h
�nX
j��

B���� tj���tj�� � � Cp����

We approximate ����� using

�n��� �
nX

m��n

m���

b�n�m 	m���

with
n
b�n�m

o
determined from the linear system

� sign�k�i�b
�n�
k �

nX
m��n

m���

b�n�m �Bn	m� 	k�n � �g� 	k�n� k � 

�
�� � � � �
n �����

We give the framework of the error analysis of the discrete Galerkin method here� and the

proof of the error analysis follows the same pattern as the proof of Theorem � in Atkinson

and Sloan ����

Associated with the discrete inner product ����� is the discrete orthogonal projection

operator Qn mapping X � Cp���� into Xn� for more details about Qn see Atkinson ��� x�����

In particular�

�Qn�� 	�n � ��� 	�n� �	 � Xn ���
��

Qn� �
nX

m��n

��� 	m�n	m ���

�

Using ���
�� and ���

�� equation ����� can be written symbolically as

Qn ����iCu�n � Bn�n� � Qng� �n � Xn ���
��

This equation is equivalent to the equation

� ��iCu�n �QnBn�n � Qng� �n � X ���
	�
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In order to prove the equivalence� we begin by assuming ���
	� is solvable� Then

���iCu�n � Qng �QnBn�n � Xn�

Using ����� for Cu� this implies �n � Xn and Qn�n � �n� Using this in ���
	� implies the

equation ���
��� A similar argument shows that ���
�� implies ���
	��

Equation ���
	� is equivalent to

�n � 


��i
C��u QnBn�n � � 


��i
C��u Qng ���
��

This is an approximation of ���	�� The equation ������ which is equivalent to ���	�� and its

approximation ���
��

�� 


��i
C��u B� � � 


��i
C��u g ���
��

�n � 


��i
C��u QnBn�n � � 


��i
C��u Qng ���
��

are used for an error analysis of the discrete Galerkin method ������

Then follow the same pattern as the proof for Theorem � in Atkinson and Sloan ���� we

can show

k�� �nk� � c

nq���	��
���
��

when g � Hq���� and � � Cp���� �Hq������� for some q � ��� and any small � � ��

� Numerical Examples

We give two numerical examples for the interior Neumann problem �
�
�� The domain D for

both of the examples is an ellipse and its boundary S is

��t� � �a cos t� b sin t�� � � t � ��
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where a � ��� and b � ���� Consider the interior Neumann problem

�u�P � � �� P � D

�u�P �

�nP

� f�P �� P � S

We represent the solution u as the double layer potential �
���� The derivative of the

Table 
� Errors in un� true solution � ex sin y
n j � 
 j � � j � 	 j � � j � �
� ����E�	 ����E�� ����E�
 ��
�E�
 ����E�

� 	���E�	 	���E�� ����E�� 
���E�
 	���E�


� 
���E�	 
���E�� ����E�� ��
	E�� 
��	E�


� 
��
E�	 
��
E�� ����E�� ��
�E�� ����E��
�� ����E�� ����E�	 
���E�� 	���E�� ����E��
�� 	��
E�� 	��
E�	 ����E�	 
���E�� 	���E��
�� ���	E�� ���	E�	 ����E�	 
�
�E�� ��
�E��
	� 
���E�� 
���E�	 	��
E�	 ��
	E�	 
�	�E��
	� ����E�� ����E�� ����E�	 ����E�	 ���
E�	
�� ����E�� ����E�� 
���E�	 ����E�	 ����E�	

unknown density function � is obtained by solving ������

Table �� Errors in un� u�Q� � log j Q� P j� P � �
� ��
n j � 
 j � � j � 	 j � � j � �
� �
���E�	 �
��
E�� �����E�� �
���E�
 �	���E�

� �
���E�	 �
���E�� �����E�� �
�
�E�
 �����E�


� �����E�� �����E�	 �����E�� �����E�� �
�	�E�


� �����E�� �����E�	 �
���E�� �	���E�� �����E��
�� �	���E�� �	���E�	 ����
E�	 �����E�� �����E��
�� �
���E�� �����E�	 �����E�	 �
���E�� ����	E��
�� �
���E�� �
���E�	 �	���E�	 �����E�	 �
��
E��
	� �����E�� ���
�E�� ���
�E�	 �����E�	 �
���E��
	� �����E�� ���
�E�� �
�	�E�	 �	�
�E�	 ����
E�	
�� �	�
�E�� �	���E�� ����	E�� �
���E�	 ���	�E�	

After solving the equation ����� for the approximate solution �n� the approximate density
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function �n is given by

�n��� �
��

L

nX
m��n

m���

bm
im

	m��� � � ��� ���

We obtain an approximation un by substituting �n for � in equation �
��� and then integrating

it numerically� The integral is evaluated with the trapezoidal rule T�m�� where m � ����
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Figure 
� n vs log�error� for u�x� y� � ex sin y

We give the results of this integration at a set of �ve points inside of D�

�xj� yj� � rj

�
a cos�

�

�
�� b sin�

�

�
�
�
� j � 
� �� 	� �� �

with rj � ���
� ��
� ����� ���� ���� The point �x	� y	� is close to the boundary S� making the

integrand in �
��� quite peaked�

Two problems have been solved� The true solution for the �rst example is

u�x� y� � ex sin y� � �x� y� � D�
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Figure �� n vs log�error� for u�Q� � log j Q� P j

The true solution of the second example is

u�x� y� � log j �x� y�� P j� � �x� y� � D

where P is a point out side of D� and we arbitrarily choose P � �
� ��� Boundary data f

for the Neumann problem are computed based on these two true solutions�

Tables 
 and � are errors for the true solutions ex sin y and log j Q�P j� respectively� We

also plot the errors as Figures 
 and �� The y
axis of the �gures are the natural logarithm

of the absolute value of the errors�

From Tables 
 and �� we have noticed that the closer the points are to the boundary�

the larger are the errors� From Figures 
 and �� it appears that the rate of convergence is

exponential�

u�A�� un�A� � O�e�cn�

for some positive number c� which is better than what is proved in ���
���
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