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Abstract

Consider solving the interior Neumann problem

Au(P) = 0, PeD
du(P)
onp f(P), pPes

with D a simply-connected planar region and S = @D a smooth curve. A double layer
potential is used to represent the solution, and it leads to the problem of solving a
hypersingular integral equation. This integral equation is reformulated as a Cauchy
singular integral equation. A discrete Galerkin method with trigonometric polynomials
is then given for its solution. An error analysis is given; and numerical examples

complete the paper.
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1 INTRODUCTION 2
1 Introduction

Let D be a bounded open simply-connected region in the plane, and let its boundary S be

sufficiently smooth. Consider the Neumann problem: Find v € C1(D)NC?(D) that satisfies

Au(P) = 0, PeD
agr(lp) = f(P), Pes (1.1)

with f € C(S5) a given boundary function.

One way of solving this problem is to express the solution u as a double layer potential,

log | A—Q | dSq. AeD (1.2)
ng

The function p is called a double layer density function or a dipole density function. Form
the derivative of u(A) in the direction np, the inner normal to the boundary S at P, and
take the limit as A — P, thus obtaining the normal derivative. For the Neumann problem,

this leads to

ou(P
spy = A0 (13)
. 9
_ j%np-vA/gp(Q)anQ log | A— Q| dSo. Pes  (14)

The integral operator is often referred to as hypersingular, and we are looking for the density
function p. For some discussion of this for S = U the unit circle, see Atkinson [5, §7.3.2].
Section 2 gives preliminary information on integral equations for S = U the unit circle;
and Section 3 relates the hypersingular integral operator to other potential representations.
Section 4 gives a reformulation of the integral equation. Section 5 gives the numerical

method and Section 6 gives numerical examples. The numerical method is based on using
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trigonometric approximations of the unknown density function, and we give what can be
regarded as either a discrete Galerkin method or a discrete collocation method.

The general idea of using an approximation scheme using trigonometric approximations
is quite old. An early use of this is given in Gabdulhaev [7]. Work from more recent years
is given by Amosov [3], Atkinson [4], Atkinson and Sloan [6], Mclean [12], and McLean,
ProBidorf, and Wendland [13]. Other approaches to the solution of the hypersingular equation
are given in Amini and Maines [1], [2], Giroire and Nedelec [8], Kress [11], and Rathsfeld,

Kieser, and Kleemann [15].

2 Preliminaries

In this paper, we consider the Neumann problem given in equation (1.1). Let D be a bounded
open simply-connected region in the plane, and assume its boundary S is sufficiently smooth.

Thus, S has a parameterization

Bs) = (£(s), n(s)), 0<s<1L (2.1)

where s is the arc length coordinate of the point P on S and L is the arc length of S.
Assume f((s) € C?[0, L] and |3'(s)| # 0 for every s € [0, L]. The normal vector n at P on
S is directed into the interior of the domain D; and we assume the direction of integration
on S to be counterclockwise.

Consider the normal derivative of u(A) in the inner direction to S at P:

ou(P) . B
o =l Vi [ Q) gz los | A= Q ldso (2.2)
9 9
= onp /SP(Q)anQ log | P —@Q | dSq (2.3)

Hp(P), pes (2.4)
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The resulting integral contains an integrand with a strongly nonintegrable singularity if the
integral and derivative operators are interchanged. Such integral operators H are often
referred to as hypersingular, and the integrals do not exist in the usual sense.

The hypersingular integral operator is very closely related to the Cauchy singular integral

operator:
Lo pQ)
=— | —=d
Colz) 271'@'/SC—Z ¢ 2e
where S is the boundary of D, as defined before. Properties of Cauchy singular integral

operators can be found in Kress [10, p. 82].

For a function ¢ € L*(0, 27), we write its Fourier expansion as

S 1
S‘Q(S) = Z am¢m(5)7 ¢m(5) = \/ﬂe

m=—00

2
an = [ pls)bn(s)ds
For any real number ¢ > 0, define H4(27) to be the set of all functions ¢ € L*(0, 27) for

which

2

o0
lelly = |laol* + > [m[*anl*| < oo
m=—0o0

m#£0

Consider the case in which S=U, the unit circle. We denote the Cauchy singular integral
operator by C, in this case; and from Henrici [9, p. 109],

ikt
Cy: e — sign(k) - 62 k=0,+1,£2, ... (2.5)

Y

with sign(0) = 1. We can interpret C, as a operator on H?(27), and

C. : HY(27) — H*(2r), q>0

onto
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Consider the same boundary for the hypersingular integral operator, and denote the

latter by H, in this case. From Atkinson [5, Sec. 7.3], we have
Hy e — 7 |k|e™, k=0,41,42,... (2.6)

For ¢ € H'(27) with ¢ = 3" a1, introduce the derivative operator D:

_<

=1 Z M P (1)

m#£0

Do(1)

Regarding the Cauchy singular integral operator €, as an operator on H%(2x), and using

the mapping properties (2.5) and (2.6), we have

Hup = —2mDCLe = —2mC, Dy

3 Connection With Logarithmic Potential

Consider ¢() as a real function, and assume z does not lie on the boundary S. Introduce

O(z) =Ulx, y)+:V(x,y) 27”/ (8 (3.1)

—Z

Substitute

(—z=reY (3.2)

where r =| ( —z | and ¥ = arg(( — z). Taking the logarithmic derivative of (3.2) (for variable

¢ and constant z),
d¢
(—=z

By the Cauchy-Riemann equations, applied to log({ — z) = logr + i), we have

. dlogr 0V
—dlogr—l—@dﬂ—( EP + 85)

99 dlogr
ds on
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Substituting this into (3.1) and separating real and imaginary parts, we obtain

1 1 L dy -1 rL 0
Ulz, y) or /599 27 Jo v ds S 27 Jo ¢an< OB T as

and
-1
Vie,y) = —/ wdlogr (3.3)
2r Js
After an integration by parts (assuming that ¢ has an integrable derivative with respect to

s) equation (3.3) can be written as

1 /Ld
Vie,y) = 5 flogrd&

These formulae indicate that for real valued densities, the real part of the Cauchy integral

coincides with the double layer potential (1.2)

ules9) = [ o3 g log s (2,9) € D (3.4
where
1
pUA(E)) = — ol

From Kress [10, p. 100], we have the following theorem:

Theorem 1 The double layer potential u with Holder continuous density p can be extended

uniformly Holder continuously from D into D.

Proof: The definition of C'%%(S), the set of all functions which are Holder continuous, can
be found from Kress [10, p. 82]. O
The next theorem gives us the existence and representation of the normal derivative of

the double layer potential v on the boundary 9.
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Theorem 2 The normal derivative of the double layer potential u with density p € C2(S)

can be extended uniformly Holder continuously from D to D. The normal derivative is given

by

Ld
PP " g )~ (o) | s Bls)=Pes  (3)

Proof: C1(9) is the set of all continuously differentiable functions ¢ such that ¢’ € C%(S);
and recall 3(s) from (2.1), a parameterization of S. See the proof in Kress [10, p. 102] O
Notice that the right-hand side of the equation (3.5) is the tangential derivative of the

simple layer potential V; and from Muskhelishvili [14, p. 31], we have

Qull) AV mdp 9\ ) — Blso) | ds

onp dsg o ds 65
Lidp B'(s0) - (B(s) — B(s0))
= — ds 3.6
o ds [ (s) = o) 0
For the Neumann problem (1.1), the double layer potential
0
w()= [ p(Q)g ~log| A~ @ dSo. AeD (3.7

solves the Neumann problem with boundary condition du/dn = f on S provided the density

p € C1(S) solves the integral equation

O p(s) 52— log | P~ B(s) | ds = f(P) Pes (3
ann Jo p(B(s Ty og s)|ds= , :
Theorem 3 Let f € C%(S) satisfy the solvability condition

/OLfds:O.

The Neumann problem (1.1) has a solution u of the form (3.7), with p € CY(S). Tuwo

solutions u can differ only by a constant, as do two solutions p.
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Proof: See Kress [10, p. 104] O
This establishes the solvability of the integral equation (3.8), and symbolically we write

this equation as

Hp = f.

4 Reformulation

With equation (3.6), we have

(|50))d8 (4.1)

Change from the variable s to 0, with

SzL—e, 0 <0< 2rm,
27

and do similarly with so and 6. Then equation (4.1) becomes

Hp(B(s0)) = —%/ ;(_6() _Q_ﬁ(;ﬂ) 5 )Zide (4.2)

Introduce a function 7 defined on [0, 27|, and implicitly on the unit circle U, by

n(9)=p(ﬂ(g)), Us(e):%p(ﬂ (g)) 0<0<2rn

The parameterization of the unit circle is
Bu(0) = (cos(8), sin(9)), 0<6<2r

Using these definitions, write (4.2) as

Hn(bo) = —%/
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_ /% B34(00) - (Bu(0) = Bulbo))
0 |6u(9)—6u(90)|2

80) — Bu0u) P50 (35D~ A5 |
{ﬁa(%) - (Bu(0) —m(eo)) ﬂ(_@) —ﬂ(%) ] n'(0)do

2 sin(6 — ) 2(1 — cos( — 09)) 5/(%) . (5(%) - 5(%)) ,
~Jo 2(1 — cos( — 09)) ' { sin(6 — 0o) ' Lé n'(0)do

_ %(Hunwo)wm(@o»

_ QL”( 27iC, Dy(0) + BDy(0)) (4.3)

where the kernel B of the integral operator B is

L) {ﬁ’(@fﬁ) (B(LE) - (L))

B sin(6 — 6y)
2000 == (o) |y

L (1 — cos(0 — 90))] (44)

The kernel B(6y, ) is continuous, and it has periodicity 2x for both 6 and 6. It’s easy to

see B is a periodic function, and we need to show it is continuous when either sin( —6y) — 0

or B(5) — B(5E) — 0.

Theorem 4 Assume 3(s) € C*[0, L], then the kernel function B(6y, 0) is continuous over

[0, 27] x [0, 27|, and it is periodic with respect to both 0 and 6y, with period 2.

Proof: It suffices to show three cases:
Case 1: 6y € (0, 27) and 0 — 0.
Note that we drop the coefficient —L /27 in (4.4) for convenience and rewrite it as

Bkl (B(E) - p(Lh)) B (E) sin(6 — )

B(eov 0) = ﬂ(g)—ﬂ(gﬂ)2 L 1—COS(0—00)

(4.5)
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Leo ( Leo ) 9
B - ﬂ(%) - U0 "
7 sin(6 — ) 2
L (1—Cos(0—00) B 9—90) (4.7

In this proof, we take the advantage of the parameterization 3 of the boundary S. Since s

is the arc coordinate of the point P on S, we have

15'(s0)| =1 and B'(s0) - B"(s0) =0 YV B(so) € S

The term (4.7) approaches 0 as § approaches 6y. For the term (4.6), we first expand 3 about

p (g) =p (g—io) _5 (Leo) (0 — 0y) + (%)Qﬁ,, (LQ?;) (0 _290)2

where 8, is between 6 and 8,. Then

() () (£ (2 () 587

003

and

) - s

~ () e+ () 7 (B2) (B2 - aw-at o
where

dmr

169)
o=-|—
4 \27
Substituting (4.8) and (4.9) to (4.6) we have

Leo ( Leo ) 9
Lo

(& >—ﬂ<%> G
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£y (). () )
(Lz_) B (_) (0 = 0o) + c2(0 — 0o)? )

va

6” (Lé’l) (¢ 290) B 1)
Ne—%y+@w—e@

(4.10)

.?@g;@waﬁ ):0

since
Lo Lo Lo Lo
() () () ()

Thus, B(f, 0) is continuous over (0, 2x) x (0, 27), and B = 0 for 8, = 6 € (0, 27).
Case 2: 0, =10, 0 > 0, and 0 — 0.

The proof of this case is the same as for case 1.
Case 3: 0y =0, 0 < 27, and 0 — 2r.

Since B has period 27, B(0, §) = B(2x, #). Therefore, let 6y = 27 and the proof follows
as for the case 1.

This completes the proof that B is continuous over [0, 2x] x [0, 27]; and B = 0 for

00:06 [0, 27T] O

Corollary 5 Assume f3(s) € C"[0, L], then the kernel function B(6y, 0) is n — 2 times

continuously differentiable over [0, 2x] x [0, 27].

Proof: B is expressed in terms of (4.6) and (4.7). (4.7) can be checked easily that it is a very

smooth function. For (4.6), we examine (4.10) carefully, we can see that the denominator of
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(4.10) never equal to zero when 6§ and 6, are close to each other. Therefore, (4.6) is n — 2

times continuously differentiable if (s) is n times continuously differentiable. a

5 The Numerical scheme

We begin by defining a Galerkin method for solving the hypersingular integral equation (3.8)

in the space L*(0, 27). However, instead of solving equation (3.8), we solve the equation

(4.3):
—27iCDy(00) + BDy(8) = g(6o) (5.1)
where
o00) = o F(B(L2)).
Let
6(0) = D). (5.2
We solve (5.1) for ¢ € L*(0, 2r):
—2miCy6 + Bé = g (5.3)

From Theorem 3, this is uniquely solvable on L?*(0, 27). By making the unknown a derivative,
we are decreasing the order of the pseudo-differential operator. Also, the first term of (5.3)
is a Cauchy singular integral operator on the unit circle, and therefor, we can compute it
easily.

The equation (5.3) is equivalent to

¢ — L,Cu—lzs’qs = _L,(Ju—lg (5.4)
) )

The right side function C;'g is in L*(0, 27). Because B has a continuous differentiable

kernel B, B is a bounded compact operator from H?(27) into H?'(27), and C;'B is a
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compact mapping from L?(0, 27) into L?(0, 27). Thus, (5.4) is a Fredholm integral equation
of the second kind. By the earlier assumption on the unique solvability of (5.3), we have

(] — —C_IB)_I exists on L*(0, 27) to L*(0, 27).

27

Introduce
X, =span {t_,, ... o, ..., 0, }

for a given n > 0, and let P, denote the orthogonal projection of L*(0, 27) onto X,,. For

= > s, We have

n

Pn@(e): Z QM¢M(0)

the truncation of the Fourier series for ¢.
Approximate (5.3) by the equation
P (—270Cu¢y + Bon) = Payg, on € X, (5.5)

Let

n

6n(0) = 3 alibn(0)

m=—n

m#£0

Note that ¢, does not have the constant term, i.e., ¢, € {¢, € X | aén) = 0}, because ¢
is the derivative of n (see (5.2)). The equation (5.5) implies that the coefficients {agjj)} are

determined from the linear system

_sign(k)izal” / / B(bo, 0),(0)r (o) d8 db

m=—n

m#£0

_ A%MQ%EJM’ k=41,....4n (5.6)

Using

pncu — Cupna pncu—l — Cu_lpnv
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the approximating equation (5.5) is equivalent to

L gy — Ly o
On — 277@'7)”0“ B¢, = 2m’pn0“ g (5.7)

This is simply a standard Galerkin method for solving (5.4).
Since P,é — ¢, for all ¢ € L*(0, 27), and since C;'B is compact, we have
H(I—Pn) Cu_lBH — 0 asn — oo
Then by standard arguments, the existence of (] — LC'_IZS’)_I implies that of

2w U

(] — LPHCJIB)_I exists and is uniformly bounded for all sufficiently large n, and

2m

1 -1
6= ullo < || (1= 5=PuCTB) | ll6 = Pudll

where || - ||o is the norm for H°(27) = L*(0, 27). For more detailed bounds on the rate of

convergence, see Atkinson [5, §7.3]:

16 = dullo < =l ¢ € H'(2r)

for any ¢ > 0.

Generally the integrals in (5.6) must be evaluated numerically, and therefore we intro-
duce a discrete Galerkin method. We give a numerical method which amounts to using the
trapezoidal rule to numerically integrate the integrals in (5.6). Introduce the discrete inner

product
2n

(f7 g)n =h Z f(tj)mv f.g¢€ CP(QW) (5'8)

i=0

with h =27 /(2n + 1), and t; = jh, y = 0,1,...,2n,; and note (-, -), is only semi-definite.
This is the trapezoidal rule with 2n+1 subdivisions of the integration interval [0, 27], because

the integrand is 27-periodic; and (-, -), is a true inner product on the set of all trigonometric
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polynomials of degree less than or equal to n. Also, approximate the integral operator B of
(4.4) by

Bug(0o) = h ) _ B(bo, 1;)6(t;), ¢ € Cy(2m)

We approximate (5.6) using

ou(0) = 32 B (0)

m=—n

m#£0

with {bgﬁj)} determined from the linear system

—sign(k)irby" + S b0 (Botb, Y)n = (9, Vi), k=41,42,...,4n (5.9)
0

We give the framework of the error analysis of the discrete Galerkin method here, and the
proof of the error analysis follows the same pattern as the proof of Theorem 6 in Atkinson
and Sloan [6].

Associated with the discrete inner product (5.8) is the discrete orthogonal projection
operator @, mapping X = C,(27) into X,,; for more details about Q,, see Atkinson [5, §4.4].

In particular,

(Qups V) = (05 %), Vi € X, (5.10)
Qn%‘o = i (997 ¢m)n¢m (5.11)

Using (5.10) and (5.11), equation (5.9) can be written symbolically as

Q, (—27iCyo, + Broy) = Quyg, o, € X, (5.12)

This equation is equivalent to the equation

—271Cyo, + Q.B,0, = Q.9 o, X (5.13)
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In order to prove the equivalence, we begin by assuming (5.13) is solvable. Then

Using (2.5) for C,, this implies o,, € A, and Q,0, = 0,. Using this in (5.13) implies the
equation (5.12). A similar argument shows that (5.12) implies (5.13).

Equation (5.13) is equivalent to

1 1
27

)

This is an approximation of (5.3). The equation (5.4), which is equivalent to (5.3), and its

approximation (5.14)

| .
¢ — %Cu 'Bo = _%Cu 'g (5.15)
1 1

are used for an error analysis of the discrete Galerkin method (5.9).
Then follow the same pattern as the proof for Theorem 6 in Atkinson and Sloan [6], we

can show

c

16 = oulloe = ——57= (5.17)

when g € H?(2x) and ¢ € C,(27) N H1™!(27), for some ¢ > 0.5 and any small € > 0.

6 Numerical Examples

We give two numerical examples for the interior Neumann problem (1.1). The domain D for

both of the examples is an ellipse and its boundary S is

B(t) = (acost, bsint), 0<t<2r
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where a = 0.5 and b = 2.5. Consider the interior Neumann problem

anp

Ip),

PebD

PesS

We represent the solution u as the double layer potential (1.2). The derivative of the

n

Table 1: Errors in u,, true solution = ¢”siny

J=1

Jj=2

J=3

j=4

J=5

4

8
12
16
20
24
28
32
36
40

8.28E—3
3.40E—-3
1.79E-3
1.01E-3
5.961—4
3.61E—4
2.23E—4
1.40E—4
8.82E—-5
5.66E—-5

8.28E—2
3.40E—-2
1.79E -2
1.01E-2
5.96E—3
3.61E—3
2.23E-3
1.40E-3
8.82E—4
5.661—4

2.07E—-1
8.561—2
4.50E-2
2.54E-2
1.50E—-2
9.07E-3
5.60E-3
3.51E-3
2.22E-3
1.42E-3

4.17E-1
1.75E—-1
9.13E-2
5.16E—-2
3.04E—-2
1.84E-2
1.14E-2
7.13E-3
4.50E-3
2.89E—-3

unknown density function p is obtained by solving (5.7).

7.70E—1
3.29E—1
1.73E—-1
9.75E—-2
5.74E—-2
3.49E—-2
2.15E-2
1.35E-2
8.51E—-3
5.44E—-3

Table 2: Errors in u,, u(Q) =log | @ — P |, P = (1, 2)

n| j=1 j=2 j=3 j=4 j=5

4| —1.96E—3 —191B—2 —494E—2 —1288—1 —3.57E—1
8| —1.90E—3 —1.97E—2 —528E—-2 —1.19E—1 —2.65E—1
12| —9.46E—4 —9.87E—3 —2.70E—2 —6.06E—2 —1.36E—1
16 | —=5.49E—4 —5.74E—3 —1.55E—2 —3.50E—2 —T7.76E—2
20 | —3.27TE—4 —3.42E—3 —9.21E—3 —2.088—2 —4.52F—2
24 | —1.99E—4 —2.08E—3 —5.60E—3 —1.26E—2 —2.83F—2
28 | —1.24E—4 —1.29E—3 —347E—3 —7.84E—3 —1.71E—2
32 | —7.75E—5 —8.10E—4 —2.18E—3 —4.92E—3 —1.08E—2
36 | —4.92E—5 —5.14E—4 —1.38E—3 —3.12E—3 —6.91E—3
40 | —3.14E—5 —3.288—4 —8.83E—4 —1.99E—3 —4.34F—3

After solving the equation (5.7) for the approximate solution o, the approximate density
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function 7, is given by

n0) =25 30 22,0) [0, 21]

m=—n

m#£0
We obtain an approximation u, by substituting 5, for pin equation (1.2) and then integrating

it numerically. The integral is evaluated with the trapezoidal rule 75,11 where m = 256.

0 T
o
-1t X ° B
5
+ X o
_2 |- .
x + x ©
-3t . X 4 o i
* r3 . % o)
-4f * . X © 1
5 r2 % « o
2 ° * % °©
g -5- * + P
= X
= o * +
_6 |- % + 1
© *
7k rl o * 4
o X
gL o i
fo!
-9t ¢} B
o
_lo 1 1 Il Il Il Il Il
0 5 10 15 20 25 30 35 40

n=4, 8, 12, ..., 40

Figure 1: n vs log(error) for u(x, y) = " siny

We give the results of this integration at a set of five points inside of D:

4 4
(1']‘, yj) =T (CLCOS(—), bSin(_)) s ] = 17 27 37 47 5
T

s

with r; = 0.01, 0.1, 0.25, 0.5, 0.9. The point (x5, ys) is close to the boundary 5, making the
integrand in (1.2) quite peaked.

Two problems have been solved. The true solution for the first example is

u(x, y) = e"siny, V(x,y) € D.
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o)
-2+ « % o 5 i
o
X
-3k ¥ + o N
+ X4 o
4t * * r3 " X g} ° J
* + o ©
- -5r r2 * + % © 1
g * + y
% ~or o o * + 3
o « n
-7+ o % 4
ri © *
-8t o *
o
-9 1) 4
o
_10 [ O .
_ll 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

n=4, 8, 12, ..., 40

Figure 2: n vs log(error) for u(Q)) =log | Q@ — P |

The true solution of the second example is

u(x, y) =log | (z,y)— P |, V(z,y) €D

where P is a point out side of D, and we arbitrarily choose P = (1, 2). Boundary data f
for the Neumann problem are computed based on these two true solutions.

Tables 1 and 2 are errors for the true solutions e’ siny and log | ) — P |, respectively. We
also plot the errors as Figures 1 and 2. The y-axis of the figures are the natural logarithm
of the absolute value of the errors.

From Tables 1 and 2, we have noticed that the closer the points are to the boundary,
the larger are the errors. From Figures 1 and 2, it appears that the rate of convergence is

exponential:

u(A) = un(A) = O(e™™)

for some positive number ¢, which is better than what is proved in (5.17).
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