A Discrete Galerkin Method for a Hypersingular

Boundary Integral Equation

David Da-Kwun Chien Math Program CSU San Marcos San Marcos, CA92096

Kendall Atkinson Math Dept. University of Iowa Iowa City, IA 52242

April 16, 1996

Abstract

Consider solving the interior Neumann problem

$$\Delta u(P) = 0, \qquad P \in D$$
 $\partial u(P)$

$$\frac{\partial u(P)}{\partial \mathbf{n}_P} = f(P), \qquad P \in S$$

with D a simply-connected planar region and $S = \partial D$ a smooth curve. A double layer potential is used to represent the solution, and it leads to the problem of solving a hypersingular integral equation. This integral equation is reformulated as a Cauchy singular integral equation. A discrete Galerkin method with trigonometric polynomials is then given for its solution. An error analysis is given; and numerical examples complete the paper.

Keywords: Hypersingular integral operator, Galerkin method.

AMS Subject Classification: Primary 65R20; Secondary 31A10, 45B05, 65N99.

1 INTRODUCTION 2

1 Introduction

Let D be a bounded open simply-connected region in the plane, and let its boundary S be sufficiently smooth. Consider the Neumann problem: Find $u \in C^1(\overline{D}) \cap C^2(D)$ that satisfies

$$\Delta u(P) = 0,$$
 $P \in D$
$$\frac{\partial u(P)}{\partial \mathbf{n}_{P}} = f(P), \qquad P \in S$$
 (1.1)

with $f \in C(S)$ a given boundary function.

One way of solving this problem is to express the solution u as a double layer potential,

$$u(A) = \int_{S} \rho(Q) \frac{\partial}{\partial \mathbf{n}_{Q}} \log |A - Q| dS_{Q}, \qquad A \in D$$
 (1.2)

The function ρ is called a double layer density function or a dipole density function. Form the derivative of u(A) in the direction \mathbf{n}_P , the inner normal to the boundary S at P, and take the limit as $A \to P$, thus obtaining the normal derivative. For the Neumann problem, this leads to

$$f(P) = \frac{\partial u(P)}{\partial \mathbf{n}_P} \tag{1.3}$$

$$= \lim_{A \to P} \mathbf{n}_P \cdot \nabla_A \int_S \rho(Q) \frac{\partial}{\partial \mathbf{n}_Q} \log |A - Q| dS_Q, \qquad P \in S$$
 (1.4)

The integral operator is often referred to as hypersingular, and we are looking for the density function ρ . For some discussion of this for S = U the unit circle, see Atkinson [5, §7.3.2].

Section 2 gives preliminary information on integral equations for S = U the unit circle; and Section 3 relates the hypersingular integral operator to other potential representations. Section 4 gives a reformulation of the integral equation. Section 5 gives the numerical method and Section 6 gives numerical examples. The numerical method is based on using 2 PRELIMINARIES 3

trigonometric approximations of the unknown density function, and we give what can be regarded as either a discrete Galerkin method or a discrete collocation method.

The general idea of using an approximation scheme using trigonometric approximations is quite old. An early use of this is given in Gabdulhaev [7]. Work from more recent years is given by Amosov [3], Atkinson [4], Atkinson and Sloan [6], Mclean [12], and McLean, Prößdorf, and Wendland [13]. Other approaches to the solution of the hypersingular equation are given in Amini and Maines [1], [2], Giroire and Nedelec [8], Kress [11], and Rathsfeld, Kieser, and Kleemann [15].

2 Preliminaries

In this paper, we consider the Neumann problem given in equation (1.1). Let D be a bounded open simply-connected region in the plane, and assume its boundary S is sufficiently smooth. Thus, S has a parameterization

$$\beta(s) = (\xi(s), \eta(s)), \qquad 0 \le s \le L \tag{2.1}$$

where s is the arc length coordinate of the point P on S and L is the arc length of S. Assume $\beta(s) \in C^2[0, L]$ and $|\beta'(s)| \neq 0$ for every $s \in [0, L]$. The normal vector **n** at P on S is directed into the interior of the domain D; and we assume the direction of integration on S to be counterclockwise.

Consider the normal derivative of u(A) in the inner direction to S at P:

$$\frac{\partial u(P)}{\partial \mathbf{n}_{P}} = \lim_{A \to P} \mathbf{n}_{P} \cdot \nabla_{A} \int_{S} \rho(Q) \frac{\partial}{\partial \mathbf{n}_{Q}} \log |A - Q| dS_{Q}$$
 (2.2)

$$\equiv \frac{\partial}{\partial \mathbf{n}_P} \int_S \rho(Q) \frac{\partial}{\partial \mathbf{n}_Q} \log |P - Q| dS_Q$$
 (2.3)

$$\equiv \mathcal{H}\rho(P), \qquad P \in S \tag{2.4}$$

2 PRELIMINARIES 4

The resulting integral contains an integrand with a strongly nonintegrable singularity if the integral and derivative operators are interchanged. Such integral operators \mathcal{H} are often referred to as hypersingular, and the integrals do not exist in the usual sense.

The hypersingular integral operator is very closely related to the Cauchy singular integral operator:

$$C\rho(z) = \frac{1}{2\pi i} \int_{S} \frac{\rho(\zeta)}{\zeta - z} d\zeta, \qquad z \in S$$

where S is the boundary of D, as defined before. Properties of Cauchy singular integral operators can be found in Kress [10, p. 82].

For a function $\varphi \in L^2(0, 2\pi)$, we write its Fourier expansion as

$$\varphi(s) = \sum_{m=-\infty}^{\infty} a_m \psi_m(s), \qquad \psi_m(s) = \frac{1}{\sqrt{2\pi}} e^{ims}$$
$$a_m = \int_0^{2\pi} \varphi(s) \overline{\psi_m(s)} ds$$

For any real number $q \geq 0$, define $H^q(2\pi)$ to be the set of all functions $\varphi \in L^2(0, 2\pi)$ for which

$$\|\varphi\|_q \equiv \left[|a_0|^2 + \sum_{\substack{m=-\infty\\m\neq 0}}^{\infty} |m|^{2q} |a_m|^2 \right]^{\frac{1}{2}} < \infty$$

Consider the case in which S=U, the unit circle. We denote the Cauchy singular integral operator by C_u in this case; and from Henrici [9, p. 109],

$$C_u: e^{ikt} \longrightarrow \operatorname{sign}(k) \cdot \frac{e^{ikt}}{2}, \qquad k = 0, \pm 1, \pm 2, \dots$$
 (2.5)

with sign(0) = 1. We can interpret C_u as a operator on $H^q(2\pi)$, and

$$C_u: H^q(2\pi) \xrightarrow{1-1} H^q(2\pi), \qquad q \ge 0$$

Consider the same boundary for the hypersingular integral operator, and denote the latter by \mathcal{H}_u in this case. From Atkinson [5, Sec. 7.3], we have

$$\mathcal{H}_u: e^{ikt} \longrightarrow \pi |k| e^{ikt}, \qquad k = 0, \pm 1, \pm 2, \dots$$
 (2.6)

For $\varphi \in H^1(2\pi)$ with $\varphi = \sum a_m \psi_m$, introduce the derivative operator \mathcal{D} :

$$\mathcal{D}\varphi(t) \equiv \frac{d\varphi(t)}{dt} = i \sum_{m \neq 0} m a_m \psi_m(t)$$

Regarding the Cauchy singular integral operator C_u as an operator on $H^q(2\pi)$, and using the mapping properties (2.5) and (2.6), we have

$$\mathcal{H}_u \varphi = -2\pi i \mathcal{D} C_u \varphi = -2\pi i C_u \mathcal{D} \varphi$$

3 Connection With Logarithmic Potential

Consider $\varphi(t)$ as a real function, and assume z does not lie on the boundary S. Introduce

$$\Phi(z) = U(x, y) + iV(x, y) = \frac{1}{2\pi i} \int_{S} \frac{\varphi(\zeta) d\zeta}{\zeta - z}$$
(3.1)

Substitute

$$\zeta - z = re^{i\vartheta} \tag{3.2}$$

where $r = |\zeta - z|$ and $\vartheta = \arg(\zeta - z)$. Taking the logarithmic derivative of (3.2) (for variable ζ and constant z),

$$\frac{d\zeta}{\zeta - z} = d\log r + id\vartheta = \left(\frac{\partial\log r}{\partial s} + i\frac{\partial\vartheta}{\partial s}\right)ds.$$

By the Cauchy-Riemann equations, applied to $\log(\zeta - z) = \log r + i\vartheta$, we have

$$\frac{\partial \vartheta}{\partial s} = -\frac{\partial \log r}{\partial \mathbf{n}}.$$

Substituting this into (3.1) and separating real and imaginary parts, we obtain

$$U(x, y) = \frac{1}{2\pi} \int_{S} \varphi \, d\vartheta = \frac{1}{2\pi} \int_{0}^{L} \varphi \frac{d\vartheta}{ds} ds = \frac{-1}{2\pi} \int_{0}^{L} \varphi \frac{\partial}{\partial \mathbf{n}_{\zeta}} \log r \, ds$$

and

$$V(x, y) = \frac{-1}{2\pi} \int_{S} \varphi \, d\log r \tag{3.3}$$

After an integration by parts (assuming that φ has an integrable derivative with respect to s) equation (3.3) can be written as

$$V(x, y) = \frac{1}{2\pi} \int_0^L \frac{d\varphi}{ds} \log r \, ds.$$

These formulae indicate that for real valued densities, the real part of the Cauchy integral coincides with the double layer potential (1.2)

$$u(x, y) = \int_0^L \rho(\beta(s)) \frac{\partial}{\partial \mathbf{n}_{\zeta}} \log r \, ds \qquad (x, y) \in D$$
 (3.4)

where

$$\rho(\beta(s)) = -\frac{1}{2\pi}\varphi(s).$$

From Kress [10, p. 100], we have the following theorem:

Theorem 1 The double layer potential u with Hölder continuous density ρ can be extended uniformly Hölder continuously from D into \overline{D} .

Proof: The definition of $C^{0,\alpha}(S)$, the set of all functions which are Hölder continuous, can be found from Kress [10, p. 82].

The next theorem gives us the existence and representation of the normal derivative of the double layer potential u on the boundary S.

Theorem 2 The normal derivative of the double layer potential u with density $\rho \in C^{1,\alpha}(S)$ can be extended uniformly Hölder continuously from D to \overline{D} . The normal derivative is given by

$$\frac{\partial u(P)}{\partial \mathbf{n}_{P}} = \frac{d}{ds_{0}} \int_{0}^{L} \frac{d\rho}{ds} \log |\beta(s) - \beta(s_{0})| ds \qquad \beta(s_{0}) = P \in S$$
 (3.5)

Proof: $C^{1,\alpha}(S)$ is the set of all continuously differentiable functions φ such that $\varphi' \in C^{0,\alpha}(S)$; and recall $\beta(s)$ from (2.1), a parameterization of S. See the proof in Kress [10, p. 102]

Notice that the right-hand side of the equation (3.5) is the tangential derivative of the simple layer potential V; and from Muskhelishvili [14, p. 31], we have

$$\frac{\partial u(P)}{\partial \mathbf{n}_{P}} = \frac{dV}{ds_{0}} = \int_{0}^{L} \frac{d\rho}{ds} \frac{\partial}{\partial s_{0}} \log |\beta(s) - \beta(s_{0})| ds$$

$$= -\int_{0}^{L} \frac{d\rho}{ds} \frac{\beta'(s_{0}) \cdot (\beta(s) - \beta(s_{0}))}{|\beta(s) - \beta(s_{0})|^{2}} ds$$
(3.6)

For the Neumann problem (1.1), the double layer potential

$$u(A) = \int_{S} \rho(Q) \frac{\partial}{\partial \mathbf{n}_{Q}} \log |A - Q| dS_{Q}, \qquad A \in D$$
 (3.7)

solves the Neumann problem with boundary condition $\partial u/\partial n = f$ on S provided the density $\rho \in C^{1,\alpha}(S)$ solves the integral equation

$$\frac{\partial}{\partial \mathbf{n}_{P}} \int_{0}^{L} \rho(\beta(s)) \frac{\partial}{\partial \mathbf{n}_{\beta(s)}} \log |P - \beta(s)| ds = f(P), \qquad P \in S$$
 (3.8)

Theorem 3 Let $f \in C^{0,\alpha}(S)$ satisfy the solvability condition

$$\int_0^L f \, ds = 0.$$

The Neumann problem (1.1) has a solution u of the form (3.7), with $\rho \in C^{1,\alpha}(S)$. Two solutions u can differ only by a constant, as do two solutions ρ .

This establishes the solvability of the integral equation (3.8), and symbolically we write this equation as

$$\mathcal{H}\rho = f.$$

4 Reformulation

With equation (3.6), we have

$$\mathcal{H}\rho(\beta(s_0)) = -\int_0^L \frac{d\rho}{ds} \frac{\beta'(s_0) \cdot (\beta(s) - \beta(s_0))}{|\beta(s) - \beta(s_0)|^2} ds \tag{4.1}$$

Change from the variable s to θ , with

$$s = \frac{L\theta}{2\pi}, \qquad 0 \le \theta \le 2\pi,$$

and do similarly with s_0 and θ_0 . Then equation (4.1) becomes

$$\mathcal{H}\rho(\beta(s_0)) = -\frac{L}{2\pi} \int_0^{2\pi} \frac{\beta'(\frac{L\theta_0}{2\pi}) \cdot \left(\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right)}{\left|\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right|^2} \frac{d\rho}{ds} d\theta \tag{4.2}$$

Introduce a function η defined on $[0, 2\pi]$, and implicitly on the unit circle U, by

$$\eta(\theta) = \rho\left(\beta\left(\frac{L\theta}{2\pi}\right)\right), \qquad \eta_s(\theta) = \frac{d}{ds}\rho\left(\beta\left(\frac{L\theta}{2\pi}\right)\right), \qquad 0 \le \theta \le 2\pi$$

The parameterization of the unit circle is

$$\beta_u(\theta) = (\cos(\theta), \sin(\theta)), \qquad 0 \le \theta \le 2\pi$$

Using these definitions, write (4.2) as

$$\mathcal{H}\eta(\theta_0) = -\frac{L}{2\pi} \int_0^{2\pi} \frac{\beta'(\frac{L\theta_0}{2\pi}) \cdot \left(\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right)}{\left|\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right|^2} \eta_s(\theta) d\theta$$

$$= -\int_{0}^{2\pi} \frac{\beta'_{u}(\theta_{0}) \cdot (\beta_{u}(\theta) - \beta_{u}(\theta_{0}))}{|\beta_{u}(\theta) - \beta_{u}(\theta_{0})|^{2}} \cdot \left[\frac{|\beta_{u}(\theta) - \beta_{u}(\theta_{0})|^{2}}{|\beta'_{u}(\theta_{0}) \cdot (\beta_{u}(\theta) - \beta_{u}(\theta_{0}))} \frac{\beta'(\frac{L\theta_{0}}{2\pi}) \cdot (\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_{0}}{2\pi}))}{|\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_{0}}{2\pi})|^{2}} \right] \eta'(\theta) d\theta$$

$$= -\int_{0}^{2\pi} \frac{\sin(\theta - \theta_{0})}{2(1 - \cos(\theta - \theta_{0}))} \cdot \left[\frac{2(1 - \cos(\theta - \theta_{0}))}{\sin(\theta - \theta_{0})} \cdot \frac{\beta'(\frac{L\theta_{0}}{2\pi}) \cdot (\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_{0}}{2\pi}))}{|\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_{0}}{2\pi})|^{2}} \right] \eta'(\theta) d\theta$$

$$= -\frac{2\pi}{L} \left(\int_{0}^{2\pi} \frac{\sin(\theta - \theta_{0})}{2(1 - \cos(\theta - \theta_{0}))} \eta'(\theta) d\theta + \mathcal{B}\mathcal{D}\eta(\theta_{0}) \right)$$

$$= \frac{2\pi}{L} \left(\mathcal{H}_{u}\eta(\theta_{0}) + \mathcal{B}\mathcal{D}\eta(\theta_{0}) \right)$$

$$= \frac{2\pi}{L} \left(-2\pi i C_{u} \mathcal{D}\eta(\theta_{0}) + \mathcal{B}\mathcal{D}\eta(\theta_{0}) \right)$$

$$(4.3)$$

where the kernel B of the integral operator \mathcal{B} is

$$B(\theta_0, \theta) = -\left(\frac{L}{2\pi}\right) \left[\frac{\beta'(\frac{L\theta_0}{2\pi}) \cdot \left(\beta(\frac{L\theta_0}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right)}{\left|\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right|^2} - \frac{\pi}{L} \frac{\sin(\theta - \theta_0)}{(1 - \cos(\theta - \theta_0))} \right]$$
(4.4)

The kernel $B(\theta_0, \theta)$ is continuous, and it has periodicity 2π for both θ and θ_0 . It's easy to see B is a periodic function, and we need to show it is continuous when either $\sin(\theta - \theta_0) \to 0$ or $\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi}) \to 0$.

Theorem 4 Assume $\beta(s) \in C^2[0, L]$, then the kernel function $B(\theta_0, \theta)$ is continuous over $[0, 2\pi] \times [0, 2\pi]$, and it is periodic with respect to both θ and θ_0 , with period 2π .

Proof: It suffices to show three cases:

Case 1: $\theta_0 \in (0, 2\pi)$ and $\theta \to \theta_0$.

Note that we drop the coefficient $-L/2\pi$ in (4.4) for convenience and rewrite it as

$$B(\theta_0, \theta) = \frac{\beta'(\frac{L\theta_0}{2\pi}) \cdot \left(\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right)}{\left|\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right|^2} - \left(\frac{\pi}{L}\right) \frac{\sin(\theta - \theta_0)}{1 - \cos(\theta - \theta_0)}$$
(4.5)

10

$$= \frac{\beta'(\frac{L\theta_0}{2\pi}) \cdot \left(\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right)}{\left|\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right|^2} - \frac{2\pi}{L(\theta - \theta_0)}$$
(4.6)

$$-\frac{\pi}{L} \left(\frac{\sin(\theta - \theta_0)}{1 - \cos(\theta - \theta_0)} - \frac{2}{\theta - \theta_0} \right) \tag{4.7}$$

In this proof, we take the advantage of the parameterization β of the boundary S. Since s is the arc coordinate of the point P on S, we have

$$|\beta'(s_0)| = 1$$
 and $\beta'(s_0) \cdot \beta''(s_0) = 0$ $\forall \beta(s_0) \in S$

The term (4.7) approaches 0 as θ approaches θ_0 . For the term (4.6), we first expand β about θ_0 :

$$\beta\left(\frac{L\theta}{2\pi}\right) = \beta\left(\frac{L\theta_0}{2\pi}\right) + \frac{L}{2\pi}\beta'\left(\frac{L\theta_0}{2\pi}\right)(\theta - \theta_0) + \left(\frac{L}{2\pi}\right)^2\beta''\left(\frac{L\theta_1}{2\pi}\right)\frac{(\theta - \theta_0)^2}{2}$$

where θ_1 is between θ and θ_0 . Then

$$\beta'\left(\frac{L\theta_0}{2\pi}\right) \cdot \left(\beta\left(\frac{L\theta}{2\pi}\right) - \beta\left(\frac{L\theta_0}{2\pi}\right)\right) = \frac{L}{2\pi}(\theta - \theta_0) + \left(\frac{L}{2\pi}\right)^2 \beta'\left(\frac{L\theta_0}{2\pi}\right) \cdot \beta''\left(\frac{L\theta_1}{2\pi}\right) \frac{(\theta - \theta_0)^2}{2} \tag{4.8}$$

and

$$\left| \beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi}) \right|^2$$

$$= \left(\frac{L}{2\pi} \right)^2 (\theta - \theta_0)^2 + \left(\frac{L}{2\pi} \right)^3 \beta' \left(\frac{L\theta_0}{2\pi} \right) \cdot \beta'' \left(\frac{L\theta_1}{2\pi} \right) (\theta - \theta_0)^3 + c_1(\theta - \theta_0)^4$$
(4.9)

where

$$c_1 = \frac{1}{4} \left(\frac{L}{2\pi} \right)^4 \left| \beta'' \left(\frac{L\theta_1}{2\pi} \right) \right|^2$$

Substituting (4.8) and (4.9) to (4.6) we have

$$\frac{\beta'(\frac{L\theta_0}{2\pi}) \cdot \left(\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right)}{\left|\beta(\frac{L\theta}{2\pi}) - \beta(\frac{L\theta_0}{2\pi})\right|^2} - \frac{2\pi}{L(\theta - \theta_0)}$$

$$= \frac{\frac{L}{2\pi}(\theta - \theta_0) \left(1 + \left(\frac{L}{2\pi}\right) \beta' \left(\frac{L\theta_0}{2\pi}\right) \cdot \beta'' \left(\frac{L\theta_1}{2\pi}\right) \frac{(\theta - \theta_0)}{2}\right)}{\left(\frac{L}{2\pi}\right)^2 (\theta - \theta_0)^2 \left(1 + \left(\frac{L}{2\pi}\right) \beta' \left(\frac{L\theta_0}{2\pi}\right) \cdot \beta'' \left(\frac{L\theta_1}{2\pi}\right) (\theta - \theta_0) + c_2(\theta - \theta_0)^2\right)}$$

$$- \frac{2\pi}{L(\theta - \theta_0)}$$

$$= \frac{2\pi}{L(\theta - \theta_0)} \left(\frac{1 + \left(\frac{L}{2\pi}\right) \beta' \left(\frac{L\theta_0}{2\pi}\right) \cdot \beta'' \left(\frac{L\theta_1}{2\pi}\right) \frac{(\theta - \theta_0)}{2}}{1 + \left(\frac{L}{2\pi}\right) \beta' \left(\frac{L\theta_0}{2\pi}\right) \cdot \beta'' \left(\frac{L\theta_1}{2\pi}\right) (\theta - \theta_0) + c_2(\theta - \theta_0)^2} - 1\right)$$

$$= \frac{2\pi}{L} \left(\frac{-\left(\frac{L}{2\pi}\right) \beta' \left(\frac{L\theta_0}{2\pi}\right) \cdot \beta'' \left(\frac{L\theta_1}{2\pi}\right) \frac{1}{2} - c_2(\theta - \theta_0)}{1 + \left(\frac{L}{2\pi}\right) \beta' \left(\frac{L\theta_0}{2\pi}\right) \cdot \beta'' \left(\frac{L\theta_1}{2\pi}\right) (\theta - \theta_0) + c_2(\theta - \theta_0)^2}\right)$$

$$(4.10)$$

Let $\theta \to \theta_0$, (4.10) becomes

$$\lim_{\theta \to \theta_0} \frac{2\pi}{L} \left(\frac{-\left(\frac{L}{2\pi}\right) \beta'\left(\frac{L\theta_0}{2\pi}\right) \cdot \beta''\left(\frac{L\theta_1}{2\pi}\right) \frac{1}{2} - c_2(\theta - \theta_0)}{1 + \left(\frac{L}{2\pi}\right) \beta'\left(\frac{L\theta_0}{2\pi}\right) \cdot \beta''\left(\frac{L\theta_1}{2\pi}\right) (\theta - \theta_0) + c_2(\theta - \theta_0)^2} \right) = 0$$

since

$$\lim_{\theta \to \theta_0} \beta' \left(\frac{L\theta_0}{2\pi} \right) \cdot \beta'' \left(\frac{L\theta_1}{2\pi} \right) = \beta' \left(\frac{L\theta_0}{2\pi} \right) \cdot \beta'' \left(\frac{L\theta_0}{2\pi} \right) = 0$$

Thus, $B(\theta_0, \theta)$ is continuous over $(0, 2\pi) \times (0, 2\pi)$, and B = 0 for $\theta_0 = \theta \in (0, 2\pi)$.

Case 2: $\theta_0 = 0$, $\theta > 0$, and $\theta \to \theta_0$.

The proof of this case is the same as for case 1.

Case 3: $\theta_0 = 0$, $\theta < 2\pi$, and $\theta \to 2\pi$.

Since B has period 2π , $B(0, \theta) = B(2\pi, \theta)$. Therefore, let $\theta_0 = 2\pi$ and the proof follows as for the case 1.

This completes the proof that B is continuous over $[0, 2\pi] \times [0, 2\pi]$; and B = 0 for $\theta_0 = \theta \in [0, 2\pi]$.

Corollary 5 Assume $\beta(s) \in C^n[0, L]$, then the kernel function $B(\theta_0, \theta)$ is n-2 times continuously differentiable over $[0, 2\pi] \times [0, 2\pi]$.

Proof: B is expressed in terms of (4.6) and (4.7). (4.7) can be checked easily that it is a very smooth function. For (4.6), we examine (4.10) carefully, we can see that the denominator of

(4.10) never equal to zero when θ and θ_0 are close to each other. Therefore, (4.6) is n-2 times continuously differentiable if $\beta(s)$ is n times continuously differentiable.

5 The Numerical scheme

We begin by defining a Galerkin method for solving the hypersingular integral equation (3.8) in the space $L^2(0, 2\pi)$. However, instead of solving equation (3.8), we solve the equation (4.3):

$$-2\pi i C_u \mathcal{D}\eta(\theta_0) + \mathcal{B}\mathcal{D}\eta(\theta_0) = g(\theta_0)$$
(5.1)

where

$$g(\theta_0) \equiv \frac{L}{2\pi} f(\beta(\frac{L\theta_0}{2\pi})).$$

Let

$$\phi(\theta) \equiv \mathcal{D}\eta(\theta). \tag{5.2}$$

We solve (5.1) for $\phi \in L^2(0, 2\pi)$:

$$-2\pi i C_u \phi + \mathcal{B}\phi = g \tag{5.3}$$

From Theorem 3, this is uniquely solvable on $L^2(0, 2\pi)$. By making the unknown a derivative, we are decreasing the order of the pseudo-differential operator. Also, the first term of (5.3) is a Cauchy singular integral operator on the unit circle, and therefor, we can compute it easily.

The equation (5.3) is equivalent to

$$\phi - \frac{1}{2\pi i} C_u^{-1} \mathcal{B} \phi = -\frac{1}{2\pi i} C_u^{-1} g \tag{5.4}$$

The right side function $C_u^{-1}g$ is in $L^2(0, 2\pi)$. Because \mathcal{B} has a continuous differentiable kernel B, \mathcal{B} is a bounded compact operator from $H^q(2\pi)$ into $H^{q+1}(2\pi)$, and $C_u^{-1}\mathcal{B}$ is a

compact mapping from $L^2(0, 2\pi)$ into $L^2(0, 2\pi)$. Thus, (5.4) is a Fredholm integral equation of the second kind. By the earlier assumption on the unique solvability of (5.3), we have $\left(I - \frac{1}{2\pi i}C_u^{-1}\mathcal{B}\right)^{-1}$ exists on $L^2(0, 2\pi)$ to $L^2(0, 2\pi)$.

Introduce

$$\mathcal{X}_n = \operatorname{span} \left\{ \psi_{-n}, \dots, \psi_0, \dots, \psi_n \right\}$$

for a given $n \geq 0$, and let \mathcal{P}_n denote the orthogonal projection of $L^2(0, 2\pi)$ onto \mathcal{X}_n . For $\varphi = \sum a_m \psi_m$, we have

$$\mathcal{P}_n\varphi(\theta) = \sum_{m=-n}^n a_m \psi_m(\theta)$$

the truncation of the Fourier series for φ .

Approximate (5.3) by the equation

$$\mathcal{P}_n\left(-2\pi i C_u \phi_n + \mathcal{B}\phi_n\right) = \mathcal{P}_n g, \qquad \phi_n \in \mathcal{X}_n$$
 (5.5)

Let

$$\phi_n(\theta) = \sum_{\substack{m=-n\\m\neq 0}}^n a_m^{(n)} \psi_m(\theta)$$

Note that ϕ_n does not have the constant term, i.e., $\phi_n \in \{\phi_n \in \mathcal{X} \mid a_0^{(n)} = 0\}$, because ϕ is the derivative of η (see (5.2)). The equation (5.5) implies that the coefficients $\{a_m^{(n)}\}$ are determined from the linear system

$$-\operatorname{sign}(k)i\pi a_k^{(n)} + \sum_{\substack{m=-n\\m\neq 0}}^n a_m^{(n)} \int_0^{2\pi} \int_0^{2\pi} B(\theta_0, \theta) \psi_m(\theta) \overline{\psi_k(\theta_0)} d\theta d\theta_0$$

$$= \int_0^{2\pi} g(\theta) \overline{\psi_k(\theta_0)} d\theta, \qquad k = \pm 1, \dots, \pm n$$
(5.6)

Using

$$\mathcal{P}_n C_u = C_u \mathcal{P}_n, \qquad \qquad \mathcal{P}_n C_u^{-1} = C_u^{-1} \mathcal{P}_n,$$

the approximating equation (5.5) is equivalent to

$$\phi_n - \frac{1}{2\pi i} \mathcal{P}_n C_u^{-1} \mathcal{B} \phi_n = -\frac{1}{2\pi i} \mathcal{P}_n C_u^{-1} g$$
 (5.7)

This is simply a standard Galerkin method for solving (5.4).

Since $\mathcal{P}_n \phi \to \phi$, for all $\phi \in L^2(0, 2\pi)$, and since $C_u^{-1} \mathcal{B}$ is compact, we have

$$\|(I - \mathcal{P}_n) C_u^{-1} \mathcal{B}\| \longrightarrow 0 \text{ as } n \to \infty$$

Then by standard arguments, the existence of $\left(I - \frac{1}{2\pi i}C_u^{-1}\mathcal{B}\right)^{-1}$ implies that of $\left(I - \frac{1}{2\pi i}\mathcal{P}_nC_u^{-1}\mathcal{B}\right)^{-1}$ exists and is uniformly bounded for all sufficiently large n, and

$$\|\phi - \phi_n\|_0 \le \left\| \left(I - \frac{1}{2\pi i} \mathcal{P}_n C_u^{-1} \mathcal{B} \right)^{-1} \right\| \|\phi - \mathcal{P}_n \phi\|_0$$

where $\|\cdot\|_0$ is the norm for $H^0(2\pi) \equiv L^2(0, 2\pi)$. For more detailed bounds on the rate of convergence, see Atkinson [5, §7.3]:

$$\|\phi - \phi_n\|_0 \le \frac{c}{n^q} \|\phi\|_q$$
, $\phi \in H^q(2\pi)$

for any q > 0.

Generally the integrals in (5.6) must be evaluated numerically, and therefore we introduce a discrete Galerkin method. We give a numerical method which amounts to using the trapezoidal rule to numerically integrate the integrals in (5.6). Introduce the discrete inner product

$$(f, g)_n = h \sum_{j=0}^{2n} f(t_j) \overline{g(t_j)}, \qquad f, g \in C_p(2\pi)$$
 (5.8)

with $h = 2\pi/(2n+1)$, and $t_j = jh$, j = 0, 1, ..., 2n; and note $(\cdot, \cdot)_n$ is only semi-definite. This is the trapezoidal rule with 2n+1 subdivisions of the integration interval $[0, 2\pi]$, because the integrand is 2π -periodic; and $(\cdot, \cdot)_n$ is a true inner product on the set of all trigonometric polynomials of degree less than or equal to n. Also, approximate the integral operator \mathcal{B} of (4.4) by

$$\mathcal{B}_n \phi(\theta_0) = h \sum_{j=0}^{2n} B(\theta_0, t_j) \phi(t_j), \qquad \phi \in C_p(2\pi)$$

We approximate (5.6) using

$$\sigma_n(\theta) = \sum_{\substack{m=-n\\m\neq 0}}^n b_m^{(n)} \psi_m(\theta)$$

with $\left\{b_m^{(n)}\right\}$ determined from the linear system

$$-\operatorname{sign}(k)i\pi b_k^{(n)} + \sum_{\substack{m=-n\\m\neq 0}}^n b_m^{(n)} (\mathcal{B}_n \psi_m, \psi_k)_n = (g, \psi_k)_n, \qquad k = \pm 1, \pm 2, \dots, \pm n$$
 (5.9)

We give the framework of the error analysis of the discrete Galerkin method here, and the proof of the error analysis follows the same pattern as the proof of Theorem 6 in Atkinson and Sloan [6].

Associated with the discrete inner product (5.8) is the discrete orthogonal projection operator \mathcal{Q}_n mapping $\mathcal{X} = C_p(2\pi)$ into \mathcal{X}_n ; for more details about \mathcal{Q}_n see Atkinson [5, §4.4]. In particular,

$$(\mathcal{Q}_n \varphi, \psi)_n = (\varphi, \psi)_n, \qquad \forall \psi \in \mathcal{X}_n$$
 (5.10)

$$Q_n \varphi = \sum_{m=-n}^n (\varphi, \psi_m)_n \psi_m \tag{5.11}$$

Using (5.10) and (5.11), equation (5.9) can be written symbolically as

$$Q_n \left(-2\pi i C_u \sigma_n + \mathcal{B}_n \sigma_n \right) = Q_n g, \qquad \sigma_n \in \mathcal{X}_n \tag{5.12}$$

This equation is equivalent to the equation

$$-2\pi i C_u \sigma_n + \mathcal{Q}_n \mathcal{B}_n \sigma_n = \mathcal{Q}_n g, \qquad \sigma_n \in \mathcal{X}$$
 (5.13)

In order to prove the equivalence, we begin by assuming (5.13) is solvable. Then

$$-2\pi i C_n \sigma_n = \mathcal{Q}_n q - \mathcal{Q}_n \mathcal{B}_n \sigma_n \in \mathcal{X}_n.$$

Using (2.5) for C_u , this implies $\sigma_n \in \mathcal{X}_n$ and $\mathcal{Q}_n \sigma_n = \sigma_n$. Using this in (5.13) implies the equation (5.12). A similar argument shows that (5.12) implies (5.13).

Equation (5.13) is equivalent to

$$\sigma_n - \frac{1}{2\pi i} C_u^{-1} \mathcal{Q}_n \mathcal{B}_n \sigma_n = -\frac{1}{2\pi i} C_u^{-1} \mathcal{Q}_n g \tag{5.14}$$

This is an approximation of (5.3). The equation (5.4), which is equivalent to (5.3), and its approximation (5.14)

$$\phi - \frac{1}{2\pi i} C_u^{-1} \mathcal{B} \phi = -\frac{1}{2\pi i} C_u^{-1} g \tag{5.15}$$

$$\sigma_n - \frac{1}{2\pi i} C_u^{-1} \mathcal{Q}_n \mathcal{B}_n \sigma_n = -\frac{1}{2\pi i} C_u^{-1} \mathcal{Q}_n g \tag{5.16}$$

are used for an error analysis of the discrete Galerkin method (5.9).

Then follow the same pattern as the proof for Theorem 6 in Atkinson and Sloan [6], we can show

$$\|\phi - \sigma_n\|_{\infty} \le \frac{c}{n^{q - 0.5 - \epsilon}} \tag{5.17}$$

when $g \in H^q(2\pi)$ and $\phi \in C_p(2\pi) \cap H^{q-1}(2\pi)$, for some q > 0.5 and any small $\epsilon > 0$.

6 Numerical Examples

We give two numerical examples for the interior Neumann problem (1.1). The domain D for both of the examples is an ellipse and its boundary S is

$$\beta(t) = (a\cos t, b\sin t), \qquad 0 \le t \le 2\pi$$

where a = 0.5 and b = 2.5. Consider the interior Neumann problem

$$\Delta u(P) = 0,$$
 $P \in D$
$$\frac{\partial u(P)}{\partial \mathbf{n}_P} = f(P),$$
 $P \in S$

We represent the solution u as the double layer potential (1.2). The derivative of the

Table 1: Errors in u_n , true solution = $e^x \sin y$							
n	j = 1	j=2	j=3	j=4	j=5		
4	8.28E - 3	8.28E-2	2.07E - 1	4.17E - 1	7.70E - 1		
8	3.40E - 3	$3.40\mathrm{E}{-2}$	$8.56E{-2}$	1.75E - 1	$3.29\mathrm{E}\!-\!1$		
12	1.79E - 3	1.79E - 2	$4.50\mathrm{E}{-2}$	$9.13E{-2}$	1.73E - 1		
16	1.01E - 3	1.01E - 2	$2.54\mathrm{E}{-2}$	5.16E - 2	9.75E - 2		
20	5.96E - 4	5.96E - 3	1.50E - 2	3.04E - 2	5.74E - 2		
24	3.61E - 4	3.61E - 3	9.07E - 3	1.84E - 2	3.49E - 2		
28	2.23E-4	2.23E - 3	5.60E - 3	1.14E - 2	$2.15\mathrm{E}{-2}$		
32	1.40E - 4	1.40E - 3	3.51E - 3	7.13E - 3	$1.35\mathrm{E}{-2}$		
36	8.82E - 5	8.82E - 4	2.22E - 3	4.50E - 3	8.51E - 3		
40	5.66E - 5	5.66E - 4	1.42E - 3	2.89E - 3	5.44E - 3		

unknown density function ρ is obtained by solving (5.7).

Table 2: Errors in u_n , $u(Q) = \log Q - P $, $P = (1, 2)$								
n	j = 1	j=2	j=3	j = 4	j=5			
4	-1.96E - 3	-1.91E-2	-4.94E-2	-1.28E - 1	-3.57E - 1			
8	-1.90E - 3	-1.97E - 2	-5.28E-2	-1.19E - 1	-2.65E-1			
12	-9.46E-4	-9.87E - 3	-2.70E - 2	-6.06E-2	-1.36E - 1			
16	-5.49E-4	-5.74E - 3	-1.55E-2	$-3.50\mathrm{E}\!-\!2$	-7.76E-2			
20	-3.27E-4	-3.42E - 3	-9.21E - 3	-2.08E-2	-4.52E - 2			
24	-1.99E-4	-2.08E - 3	-5.60E - 3	-1.26E-2	-2.83E-2			
28	-1.24E-4	-1.29E - 3	-3.47E - 3	-7.84E - 3	-1.71E-2			
32	-7.75E - 5	-8.10E-4	-2.18E - 3	-4.92E - 3	-1.08E-2			
36	-4.92E - 5	-5.14E-4	-1.38E - 3	-3.12E - 3	-6.91E - 3			
40	-3.14E-5	-3.28E-4	-8.83E-4	-1.99E - 3	-4.34E - 3			

After solving the equation (5.7) for the approximate solution σ_n , the approximate density

function η_n is given by

$$\eta_n(\theta) = \frac{2\pi}{L} \sum_{\substack{m=-n\\m\neq 0}}^n \frac{b_m}{im} \psi_m(\theta) \qquad \theta \in [0, 2\pi]$$

We obtain an approximation u_n by substituting η_n for ρ in equation (1.2) and then integrating it numerically. The integral is evaluated with the trapezoidal rule T_{2m+1} where m=256.

Figure 1: n vs $\log(\text{error})$ for $u(x, y) = e^x \sin y$

We give the results of this integration at a set of five points inside of D:

$$(x_j, y_j) = r_j \left(a \cos(\frac{4}{\pi}), b \sin(\frac{4}{\pi}) \right), \qquad j = 1, 2, 3, 4, 5$$

with $r_j = 0.01, 0.1, 0.25, 0.5, 0.9$. The point (x_5, y_5) is close to the boundary S, making the integrand in (1.2) quite peaked.

Two problems have been solved. The true solution for the first example is

$$u(x, y) = e^x \sin y,$$
 $\forall (x, y) \in D.$

Figure 2: n vs $\log(\text{error})$ for $u(Q) = \log |Q - P|$

The true solution of the second example is

$$u(x, y) = \log | (x, y) - P |, \qquad \forall (x, y) \in D$$

where P is a point out side of D, and we arbitrarily choose P = (1, 2). Boundary data f for the Neumann problem are computed based on these two true solutions.

Tables 1 and 2 are errors for the true solutions $e^x \sin y$ and $\log |Q-P|$, respectively. We also plot the errors as Figures 1 and 2. The y-axis of the figures are the natural logarithm of the absolute value of the errors.

From Tables 1 and 2, we have noticed that the closer the points are to the boundary, the larger are the errors. From Figures 1 and 2, it appears that the rate of convergence is exponential:

$$u(A) - u_n(A) = \mathcal{O}(e^{-cn})$$

for some positive number c, which is better than what is proved in (5.17).

REFERENCES 20

References

[1] S. Amini and N. Maines (1995) Regularisation of strongly singular integrals in boundary integral equations, Tech. Rep. MCS-95-7, Univ. of Salford, United Kingdom.

- [2] S. Amini and N. Maines (1995) Qualitative properties of boundary integral operators and their discretizations, Tech. Rep. MCS-95-12, Univ. of Salford, United Kingdom.
- [3] B. Amosov (1990) On the approximate solution of elliptic pseudodifferential equations over smooth closed curves, Zeitschrift für Analysis und ihre Anvendungen 9, pp. 545-563.
- [4] K. Atkinson (1988) A discrete Galerkin method for first kind integral equations with a logarithmic kernel, Journal of Int. Eqns & Applies. 1, pp. 343-363.
- [5] K. Atkinson (1996) The Numerical Solution of Fredholm Integral Equations of the Second Kind, 500+ pages, to appear.
- [6] K. Atkinson and I. Sloan (1993) The numerical solution of first-kind logarthmic-kernel integral equations on smooth open arcs, Math. of Comp. 56, pp. 119-139.
- [7] B. Gabdulhaev (1968) Approximate solution of singular integral equations by the method of mechanical quadratures, *Soviet Math. Dokl.* 9, pp. 329-332.
- [8] J. Giroire and J. Nedelec (1978) Numerical solution of an exterior Neumann problem using a double layer potential, *Math. of Comp.* **32**, pp. 973-990.
- [9] P. Henrici (1986) Applied and Computational Complex Analysis, Vol. 3, John Wiley, New York.

REFERENCES 21

- [10] R. Kress (1989) Linear Integral Equations, Springer-Verlag, New York.
- [11] R. Kress (1995) On the numerical solution of a hypersingular integral equation in scattering theory, J. Comp. & Appl. Maths. 61, pp. 345-360.
- [12] W. McLean (1986) A spectral Galerkin method for a boundary integral equation, Math. of Comp. 47, pp. 597-607.
- [13] W. McLean, S. Prößdorf, and W. Wendland (1993) A fully-discrete trigonometric collocation method, J. Int. Eqns. & Applic. 5.
- [14] N. Muskhelishvili (1953) Singular Integral Equations, Noordhoff, Groningen.
- [15] A. Rathsfeld, R. Kieser, and B. Kleemann (1992) On a full discretization scheme for a hypersingular boundary integral equation over smooth curves, Z. für Anal. nd ihre Anwendungen 11, pp. 385-396.