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Abstract

Much of the research on the numerical analysis of Fredholm type in-
tegral equations during the past ten years has centered on the solution of
boundary integral equations (BIE). A great deal of this research has been
on the numerical solution of BIE on simple closed boundary curves S for
planar regions. When a BIE is de�ned on a smooth curve S, there are
many numerical methods for solving the equation. The numerical analysis
of most such problems is now well-understood, for both BIE of the �rst
and second kind, with many people having contributed to the area. For
the case with the BIE de�ned on a curve S which is only piecewise smooth,
new numerical methods have been developed during the past decade. Such
methods for BIE of the second kind were developed in the mid to late 80s;
and more recently, high order collocation methods have been given and an-
alyzed for BIE of the �rst kind. The numerical analysis of BIE on surfaces
S in R3 has become more active during the past decade, and we review
some of the important results. The convergence theory for Galerkin meth-
ods for BIE is well-understood in the case that S is a smooth surface, for
BIE of both the �rst and second kind. For BIE of the second kind on piece-
wise smooth surfaces, important analyses have been given more recently
for both Galerkin and collocation methods. In contrast, almost nothing
is understood about collocation methods for solving BIE of the �rst kind,
regardless of the smoothness of S. Numerical methods for BIE on surfaces
S in R3 lead to computationally expensive procedures, and a great deal
of the research for such BIE has looked at the e�cient numerical evalu-
ation of integrals, the use of iterative methods for solving the associated
linear systems, and the use of \fast matrix-vector calculations" for use in
iteration procedures.

1 Introduction

Boundary integral equations (BIE) are reformulations of boundary value prob-
lems for partial di�erential equations. They have been present in the mathe-
matics literature for almost two centuries, and engineers have made much use of
them for solving a wide variety of real-world problems. As a few examples of the
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use of BIE, we cite Hess [43] and Newman [58] for potential ow calculations,
Rizzo et al. [70] and Rudolphi et al. [72] for crack problems in elasticity, and
Jaswon and Symm [44] for electrostatic and elastostatic calculations.

In spite of the widespread use of BIE, much of their numerical analysis has
not been well-understood until much more recently, say from 1975 onwards.
One of the major contributions to the subject was the recognition that most
BIE can be regarded as strongly elliptic pseudo-di�erential operator equations
on suitably chosen Sobolev spaces, and further, that �nite element methods can
then be applied to their solution. This theory is well-surveyed in the article [87]
of W. Wendland, given during the last meeting in 1986 on the State of the Art in
Numerical Analysis, and in the papers of Costabel [23], Costabel and Wendland
[26], and Wendland [88]. For this reason, we omit further mention of it in this
survey.

The theory of �nite element methods for strongly elliptic pseudo-di�erential
operator equations is most useful when the boundary S is a smooth curve or
surface and when Galerkin methods are being used. During the past decade,
there has been much research on numerical methods for BIE on piecewise smooth
boundaries and on the study of collocation methods for all types of BIE. In
addition, more attention has been given to the practical problems associated
with solving discretizations of BIE, including numerical integration, iteration
methods for solving the associated linear systems, and the use of \fast matrix-
vector calculations".

In this survey, we concentrate on the topics mentioned in the last paragraph.
We also restrict the survey to BIE for Laplace's equation �u = 0. In part, this
this is due to space limitations; but also, most of the major aspects of the theory
are adequately understood by considering this case alone.

2 Boundary Integral Equations

To begin, we summarize the most popular BIE reformulations of Laplace's equa-
tion; and most such BIE are obtained as straightforward applications of the the
divergence theorem. We omit BIE for planar problems that are derived as a
consequence of applications of Cauchy's formula from functions of a complex
variable.

2.1 Green's representation formulas

Let D be a planar simply-connected bounded region with a boundary S to which
the divergence theorem can be applied. For example, let S be piecewise smooth,
meaning that S is composed of a �nite number of smooth sections, each of which
has a C1 parameterization. Assume u 2 C1(D) \ C2(D) and �u � 0 on D.
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Then

Z
S

�
@u(Q)

@nQ
log jP �Qj � u(Q)

@

@nQ
[log jP �Qj]

�
dSQ =

8<:
2�u(P ); P 2 D

(P )u(P ); P 2 S
0; P 2 De

(2.1)
In this, nQ is the inner normal to S at Q, 
(P ) is the interior boundary angle
at P , and De = R

2nD.
An exterior variant is obtained by considering u 2 C1(De) \ C2(De) with

�u � 0 on De and

sup
P2De

ju(P )j <1

Then Z
S

�
@u(Q)

@nQ
log jP �Qj � u(Q)

@

@nQ
[log jP �Qj]

�
dSQ

=

8<:
2� [u(1)� u(P )] ; P 2 De

2�u(1)� [2� �
(P )] u(P ); P 2 S
2�u(1); P 2 D

(2.2)

2.1.1 Formulas in three dimensions

Let D � R
3 be a bounded simply-connected region with a piecewise smooth

boundary S. Assume u 2 C1(D) \ C2(D) and �u � 0 on D. Then

Z
S

�
u(Q)

@

@nQ

�
1

jP �Qj
�
� @u(Q)

@nQ

1

jP �Qj
�
dSQ =

8<:
4�u(P ); P 2 D

(P )u(P ); P 2 S
0; P 2 De

(2.3)
In this, nQ is the inner normal to S at Q, 
(P ) is the interior solid angle at P ,
and De = R

3nD.
For the exterior variant of this formula, assume u 2 C1(De)\C2(De); �u � 0

on De, and

ju(P )j = O
�
jP j�1

�
; jru(P )j = O

�
jP j�2

�
as jP j ! 1

Then Z
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�
u(Q)
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jP �Qj
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� @u(Q)
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1

jP �Qj
�
dSQ

=

8<:
�4�u(P ); P 2 De

� [4� �
(P )] u(P ); P 2 S
0; P 2 D

(2.4)
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2.2 Direct boundary integral equations

Direct BIE are obtained directly from the above formulas, either by using one of
the given formulas or by using some derivative of them. The unknown function is
then the function u or its normal derivative @u=@n. One of the reasons that direct
BIE are sometimes preferred is because the unknown function has immediate
physical signi�cance, as compared to the unknown in an indirect BIE. We give
some examples of direct BIE.

Solve the exterior planar Neumann problem

�u(P ) = 0; P 2 De

@u(p)

@nP
= f(P ); P 2 S (2.5)

and assume S is smooth. For uniqueness, we impose

ju(P )j = O
�
jP j�1

�
; jru(P )j = O

�
jP j�2

�
as jP j ! 1. Then solve the BIE

��u(P ) +
Z
S

u(Q)
@

@nQ
[log jP �Qj] dSQ =

Z
S

f(Q) log jP �Qj dSQ; P 2 S

(2.6)
This is a classical BIE of the second kind; and it is well known that it is uniquely
solvable within C(S) for any given right hand function in C(S), not just those
written in the form of the given integral on the right side of (2.6).

Solve the interior planar Dirichlet problem

�u(P ) = 0; P 2 D
u(P ) = f(P ); P 2 S

Do this by solving Z
S

 (Q) log jP �Qj dSQ = '(P ); P 2 S (2.7)

'(P ) =

Z
S

f(Q)
@

@nQ
[log jP �Qj] dSQ +
(P )f(P )

with the unknown

 (Q) � @u(Q)

@nQ

The above BIE of the �rst kind has been studied intensively in the past decade;
and today it is very well understood for the case that S is a smooth curve.

For other direct BIE reformulations of Laplace's equation, see Blue [16] and
Jaswon and Symm [44].
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2.3 Indirect boundary integral equations

We will consider some indirect BIE in R3 , and analogous formulas can be given
in R2 . We begin by deriving some consequences of formulas (2.3) and (2.4).

Let ui 2 C1(D) \ C2(D) and �ui � 0 on D; and let ue 2 C1(De) \ C2(De);
�ue � 0 on De, with

jue(P )j = O
�
jP j�1

�
; jrue(P )j = O

�
jP j�2

�
as jP j ! 1

For points P 2 S, introduce
[u(P )] = ui(p)� ue(P )�

@u(P )

@nP

�
=

@ui(P )

@nP
� @ue(P )

@nP

(2.8)

Subtract the exterior version of Green's representation formula (2.4) from the
interior version (2.3). This yieldsZ

S

�
[u(Q)]

@

@nQ

�
1

jP �Qj
�
�
�
@u(Q)

@nQ

�
1

jP �Qj
�
dSQ

=

8<:
4�ui(P ); P 2 D

(P )ui(P ) + [4� �
(P )]ue(P ); P 2 S
4�ue(P ); P 2 De

(2.9)

We illustrate the use of (2.9) by deriving a single layer representation for
the solution of Laplace's equation. Given a function ui 2 C1(D) \ C2(D) and
�ui � 0 on D, choose a function ue 2 C1(De) \ C2(De); �ue � 0 on De, with

jue(P )j = O
�
jP j�1

�
; jrue(P )j = O

�
jP j�2

�
and with

ue(P ) = ui(P ); P 2 S (2.10)

Then ui has the representation

ui(P ) =

Z
S

 (Q)

jP �QjdSQ; P 2 D (2.11)

with

 (Q) = � 1

4�

�
@ui(Q)

@nQ
� @ue(Q)

@nQ

�
; Q 2 S (2.12)

This in turn leads to both BIE of the �rst kind and second kind, depending on
the type of boundary condition being given.

We can repeat the above type of argument to obtain the double layer repre-

sentation

ui(P ) =

Z
S

�(Q)
@

@nQ

�
1

jP �Qj
�
dSQ; P 2 D (2.13)
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In this case, we replace (2.10) with the matching of the normal derivatives on S.
The function � has the interpretation

�(Q) =
1

4�
[ui(Q)� ue(Q)] (2.14)

The formulas (2.12) and (2.14) can be used to obtain regularity results for the
respective functions  and �, by using regularity results on the solutions of
Laplace's equation. For an example of this, see Petersdorf and Stephan [62].

As an example of the use of (2.13), consider solving the interior Dirichlet
problem

�u(P ) = 0; P 2 D
u(P ) = f(P ); P 2 S (2.15)

as the double layer potential of (2.13). This leads to the classic BIE of the second
kind

(2� +K) � = f (2.16)

K�(P ) =
Z
S

�(Q)
@

@nQ

�
1

jP �Qj
�
dSQ + [2� � 
(P )] �(P ); P 2 S (2.17)

In the case that S is smooth, this is one of the equations studied by Ivar Fredholm
in order to show the existence of solutions to the Dirichlet problem for �u =
0; and it is also the classic BIE example given in most textbooks on partial
di�erential equations. When the double layer representation is used to solve the
interior Neumann problem, one obtains a hypersingular BIE. For examples of
the solution of this equation in R3 , see Giroire and Nedelec [36] and Petersdorf
and Stephan [63].

3 The Numerical Solution of Planar Problems

Until the early 1970s, the most commonly studied BIE in numerical analysis
was the classic second kind equation (2.16) with a smooth planar boundary S
in R2 . Solving the interior Dirichlet problem using a double layer representation
for u(P ) leads to a second kind equation (�� +K) � = f;

���(t) +
Z 2�

0

K(t; s)�(s) ds = f(t)

in which K is smooth and periodic. Essentially any numerical method will work
well, and Nystr�om methods with the trapezoidal rule probably work best.

���n(t) + h
nX

j=1

K(t; jh)�n(jh) = f(t); 0 � t � 2�

k�� �nk1 = O (kK��Kn�k1)
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For a complete discussion of this method, see [10]x7.2. Most of the work of the
past two decades has looked at other planar BIE problems, especially those of
the �rst kind on smooth boundaries and those of both the �rst and second kind
for piecewise smooth boundaries.

3.1 BIE of the �rst kind on a smooth boundary

A large literature has developed in the past 10 to 15 years for BIE of the �rst
kind. The most studied of such BIE has been

Lx(P ) �
Z
S

x(P ) log jP �Qj dSQ = f(P ); P 2 S (3.1)

often called Symm's equation. The curve S is �nite, and it can be either open
or closed. Unique solvability for all f 2 C(S) follows if S is not a �-contour;
and this is guaranteed by assuming that S has a diameter less than 1 (which
can always be attained when solving Laplace's equation by a re-scaling of the
variables). For a complete development of the theory of Lx = f , see Yan and
Sloan [90]. In particular, for S simple, closed, and C1,

L : Hr (S)
1�1!
onto

Hr+1 (S) ; r � 0 (3.2)

The operator L can also be extended to Hr (S) for r < 0, and then (3.2) will be
true for all real r.

The key to understanding the behaviour of L and to analyzing numerical
methods for solving (3.1) is to decompose L as follows. Let S have a parameter-
ization r(t); 0 � t � 2�; and then write

Lx(r(t)) =
Z 2�

0

[log jr(t)� r(s)j] jr0(s)jx(r(s))ds; 0 � t � 2�

Introduce the equivalent operator

K'(t) =
Z 2�

0

'(s) log jr(t) � r(s)j ds; 0 � t � 2� (3.3)

The equation Lx = f becomes
K' = g

with
g(t) = f(r(t)); '(s) = jr0(s)j x(r(s))

We can write
K' = ��A'+ B' (3.4)

A'(t) =
Z 2�

0

'(s) log

����2e� 1

2 sin

�
t� s

2

����� ds (3.5)
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B'(t) =
Z 2�

0

B(t; x)'(s) ds

B(t; s) =

8>><>>:
log

jpe [r(t)� r(s)]j����2 sin� t� s

2

����� ; t� s 6= 2m�

log jper0(t)j ; t� s = 2m�

If r 2 Cm
p (2�), then B(t; s) is in Cm�1

p (2�) with respect to both s and t. Con-
sequently, B is a compact operator on most spaces. For example, B is compact
from Hr to Hr+1 for r � 0, provided m > 2: Then K' = g is equivalent to

��'+A�1B' = A�1g (3.6)

This is a second kind equation, with a compact integral operator; and as noted
earlier, much is known about such equations.

It can be shown that

A'(t) = 1p
2�

24b'(0) + X
jmj>0

b'(m)

jmj e
ims

35 (3.7)

where

'(s) =
1p
2�

1X
m=�1

b'(m)eims

In essence, A is a slight modi�cation of K with S the unit circle; and (3.7) shows

A : Hr 1�1!
onto

Hr+1; r � 0

The decomposition (3.4) is the major tool used in analyzing many numerical
methods for solving K' = g.

3.1.1 Numerical methods

For an excellent survey of numerical methods for solving Lx = f , see Sloan
[79]. To derive Galerkin methods, regard L as a strongly elliptic operator from

H� 1

2 (S) to H
1

2 (S):

(Lx; x) � c kxk2� 1

2

; x 2 H� 1

2 (3.8)

and then extend �nite element methods and their analysis to this case. De-
�ne suitable �nite element subspaces Xn, and then �nd xn from the Galerkin
conditions

(Lxn; v) = (f; v); v 2 Xn
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The left side uses the extension to H
1

2 �H� 1

2 of the standard inner product on
H0 = L2. Then it follows from Cea's Lemma that xn exists and

kx� xnk� 1

2

� c inf
v2Xn

kx� vk� 1

2

(3.9)

With xn piecewise polynomial of degree r � 0;

kx� xnk0 � chr+1 kxkr+1 ; x 2 Hr+1 (3.10)

Collocation methods for Lx = f divide into two classes, depending on the
form of the approximating functions. With piecewise polynomial approximants,
we obtain boundary element methods; and with trigonometric polynomial ap-
proximants, we obtain spectral methods. For boundary element methods, we
cite Arnold and Wendland [4] and Saranen [73]. Again, the entire literature is
well-surveyed in [79].

3.1.2 Spectral methods

The spectral methods de�ne Xn as the trig polynomials of degree � n. For a
Galerkin method to solve K' = g, let Pn denote the orthogonal projection of
L2(0; 2�) onto Xn. De�ne 'n 2 Xn as the solution of

PnK'n = Png
Recalling (3.4) and using the special properties of A, especially

PnA = APn ;  2 Xn
we have the equivalent equation

'n + PnA�1B'n = PnA�1g
A complete error analysis can be based on comparing this with

��'+A�1B' = A�1g
For example, see McLean [51]. A spectral discrete Galerkin-collocation method is
given in [7] for Laplace's equation with S a smooth simple closed curve, and this
is extended in [15] to smooth open arcs. Extensions to a more general framework
and to other BIE are given in McLean [52], McLean et al. [53], and Saranen and
Vainikko [74].

3.2 Hypersingular BIE on smooth boundaries

Use a double layer potential

u(P ) =

Z
S

�(Q)
@

@nQ
[log jP �Qj] dSQ; P 2 D
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to solve the interior Neumann problem for �u = 0 on D. We �nd � by solving

H� = f (3.11)

H�(P ) � lim
A!P

nP � rA

Z
S

�(Q)
@

@nQ
[log jA�Qj] dSQ

� @

@nP

Z
S

�(Q)
@

@nQ
[log jP �Qj] dSQ

For S = unit circle, let H be denoted by Hu. Then

Hu : e
int ! � jnj eint; n = 0;�1; ; ::: (3.12)

Let D denote the derivative operator, and let Cu denote the Cauchy singular
integral operator on the unit circle:

Cu'(z) = 1

�i

Z
j�j=1

'(�) d�

� � z

Then
Hu = ��iDCu = ��iCuD (3.13)

Hu : H
r ! Hr�1; r � 1

For the general equation H� = f , with a parameterization of S proportional to
arc-length and L the length of S,

H�(�) = �2�

L
Hu�(�) + BD�(�) (3.14)

with B a smoothing operator. This can be used to develop spectral methods of
solution. Numerical methods for solving H� = f are given in Rathsfeld et al.
[69], Kress [50], Chien and Atkinson [22], and Amini and Maines [2].

3.3 Second kind BIE on piecewise smooth boundaries

This is a topic on which enormous progress has been made since the early 1980s,
essentially solving the problem. As a particular example, consider solving the
interior Dirichlet problem with boundary data f by using a double layer potential
representation:

u(P ) =

Z
S

�(Q)
@

@nQ
[log jP �Qj] dSQ; P 2 D (3.15)

Then � satis�es
(�� +K) � = f (3.16)

K�(P ) =
Z
S

�(Q)
@

@nQ
[log jP �Qj] dSQ � [� �
(P )] �(P ); P 2 S (3.17)
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The quantity 
(P ) denotes the interior angle at P 2 S. It can be shown that

K : C(S)! C(S)

is bounded. The behaviour of a solution � can be studied by using

�(P ) = u(P )� ue(P )

with ue(P ) a solution of an exterior Neumann problem with normal derivative
matching that of u(P ) on S, as in (2.13)-(2.14).

Let S have a corner at the origin with the interior angle

� = (1� �)�; �1 < � < 1

It follows from regularity results for Laplace's equation that

�(P ) = O
�
jP j�

�
; � =

1

1 + j�j (3.18)

Therefore, � has an algebraic singularity with

1

2
< � < 1

In addition to the lack of smoothness in �, the operatorK is no longer compact
on C(S). To gain some insight, look at the special case of a wedge boundary, as
in Figure 1. Solve the Dirichlet problem with boundary data f as a double layer
potential (3.15), which means solving

(�� +K) � = f (3.19)

This is equivalent to the system

���1(x) �
Z 1

0

x sin (��) �2(y) dy

x2 + 2xy cos (��) + y2
= f1(x)

���2(x) �
Z 1

0

x sin (��) �1(y) dy

x2 + 2xy cos (��) + y2
= f2(x)

for 0 < x � 1. The function �1 and �2 are the restrictions of � to the bottom
branch and upper branch of S, respectively. This system can be uncoupled as

�� �(x)�
1Z
0

x sin (��) �(y) dy

x2 + 2xy cos (��) + y2
= F�(x) (3.20)

and each equation can be reduced to a more well-known type of equation.
One approach is to use the change of variables x = e�t, y = e�� . Then (3.20)

becomes the Wiener-Hopf equation

�� b (t)� Z 1

0

sin (��) b (�)
et�� � 2 cos (��) + e��t

= bF (t); 0 � t <1 (3.21)
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(1-  χ ) π
x

10

Figure 1. A wedge boundary

From this perspective, we obtain that the spectrum of K equals [���; ��], show-
ing clearly K is not compact.

A second approach is to rewrite (3.20) as the Mellin convolution equation

�� �(x)�
1Z
0

�

�
x

y

�
 �(y)

dy

y
= F�(x) (3.22)

�(u) =
u sin (��)

u2 + 2u cos (��) + 1
; 0 � u <1

This has become the preferred way to study the wedge equation and its numerical
solution.

3.3.1 Galerkin methods

Regard the wedge operator

L (x) �
1Z
0

x sin (��) (y) dy

x2 + 2xy cos (��) + y2
; 0 < x � 1
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from (3.20) as an operator on L2(0; 1). Then

kLk � �
���sin���

2

���� < �

and therefore
(�� �L) = F (3.23)

is uniquely solvable. Let Xn be a subspace of piecewise polynomial functions,
and let Pn be the orthogonal projection of L2(0; 1) onto Xn. Then

(�� �PnL) n = PnF
is uniquely solvable for  n 2 Xn, the method is stable, and

k �  nk2 � �
(�� �PnL)�1 k �Pn k2 (3.24)

By using a graded mesh that compensates for the behaviour in (3.18), we can
obtain an optimal order of convergence. De�ne a graded mesh using

xi =

�
i

n

�q
; i = 0; 1; :::; n; q � 1 (3.25)

Let Xn consist of all piecewise polynomial functions of degree � r. Recall the or-
der of convergence of the solution about the origin is O(x�) with � = (1 + j�j)�1.
Then choose

q >
r + 1

� + 1
2

It follows that
k �  nk2 � O

�
n�(r+1)

�
(3.26)

Choosing q � r + 1 will ensure this for all angles. These generalize to results
using k�k1, with a suitably larger choice for q. The above theory was �rst given
in Chandler [17].

3.3.2 Collocation methods

Let Xn denote all piecewise polynomials of degree � r on our graded mesh, with
no continuity restrictions. Introduce

0 � �0 < �1 < � � � < �r � 1

and de�ne collocation nodes

xi;j = xi�1 + �j (xi � xi�1) ; j = 0; :::; r

for i = 1; :::; n. [With �0 = 0 and �r = 1, there are continuity restrictions on Xn.]
De�ne Pn as the piecewise interpolatory projection of C[0; 1] onto Xn [actually
we must use a larger space than C[0; 1] to have a well-de�ned theory, as in [13]].



14 Boundary Integral Equations

For the wedge equation (3.23), the resulting collocation method can be writ-
ten abstractly as

(�� �PnL) n = PnF (3.27)

It is more di�cult to analyze than Galerkin's method; and just having Pnx! x
for all x 2 C[0; 1], with a suitably graded mesh, is no longer su�cient for conver-
gence (due to an example in [18]). For the numerical method, the approximating
subspace Xn must be modi�ed about the origin, with a corresponding change
in Pn. On some neighborhood [0; xi� ], we must de�ne the approximations as
piecewise constant, with corresponding collocation nodes the centroids of the
subintervals.

Assume Z 1

0

 
rY

i=0

(� � �i) g(�)d�

!
= 0; deg (g) � r0

Then for some i� � 0 chosen su�ciently large, the inverses (�� �PnL)�1 exist
and are uniformly bounded for n � N . Moreover, if

q >
r + r0 + 2

�

then

max
i;j

j (xi;j)�  n(xi;j)j � O
�
n�(r+r

0+2)
�

(3.28)

This is uniform in � if

q � 2 (r + r0 + 2)

A crucial role in the analysis is played by the problem of inverting \�nite
section" equations. In the Mellin convolution formulation, we need to show the
stability over � of the approximation

�� �(x)�
1Z
�

�

�
x

y

�
 �(y)

dy

y
= F (x); 0 < x � 1 (3.29)

and its relation to the full equation

�� (x) �
1Z
0

�

�
x

y

�
 (y)

dy

y
= F (x); 0 < x � 1

This is also the problem of analyzing the approximation of the Wiener-Hopf
equation

�� b (t)� 1Z
0

k (t� �) b (�) dy = bF (t); t � 0
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by the �nite section equation

�� b (t)� Z
0

k (t� �) b (�) dy = bF (t); t � 0 (3.30)

and in this case, the problem was �rst solved by Anselone and Sloan [3].
The general solvability theory for (�� +K) � = f goes back to Radon [65] in

1919. His methods are akin to the present methods: the problem is divided into
two parts, one on a small `wedge shaped' section about the corner point and the
other on the remaining part of the boundary. This is also the basis for studying
the corresponding problems on surfaces in R3 .

For Nystr�om methods for solving (�� +K) � = f , see Graham and Chandler
[35]. For a general approach to all of these methods and generalizations of
them, see Elschner [29]. For some other references to the approximate solution
of (�� +K) � = f , see Costabel and Stephan [24], Atkinson and de Hoog [14],
Kress [49], Rathsfeld [67], Atkinson and Graham [12], and Jeon [45].

3.4 First kind BIE on piecewise smooth boundaries

For S a piecewise smooth boundary, the choice of study for �rst kind BIE is
again

Lx(P ) �
Z
S

x(P ) log jP �Qj dSQ = f(P ); P 2 S

Preliminary results on collocation methods for this equation were obtained by
Yan [89] and Costabel and Stephan [25]. When compared with the earlier work
in x3.1 for S a smooth boundary, the di�culty is that the earlier split

L = ��A+ B
is no longer of much use, in that B is no longer a compact operator.

The �rst general collocation method was obtained only recently, by Elschner
and Graham [32]. The main idea in their work is to use a carefully constructed
parameterization of the polygonal boundary, one which will improve the be-
haviour of the equation in the vicinity of corners of S. For simplicity, consider
only a single corner, at the origin. Then introduce a parameterization

 : [��; �]! S

with (0) = 0, and consider here only the corner at the origin. Then Lx = f
becomes

Kw(�) �
Z �

��

log j(s)� (�)jw(�) = g(s) (3.31)

w(�) = j0(�)j x((�)); g(s) = f((s))

The function  is so chosen that all low order derivatives vanish around s = 0.
The form of  is

(s) = O (sq)
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for s near to 0, and with q chosen su�ciently large.
The resulting solution w is relatively smooth around 0; and the operator A

of (3.5) can again be used in approximating K. We transform Kw = g to�
I +A�1 (K �A)�w = A�1g (3.32)

It can be shown that

A�1 (K �A) = �HD (K �A) + E

with E compact, D' = '0, and H the Hilbert singular integral operator. The
operator

B = �HD (K �A)
can be shown to be equivalent about the corner at the origin to a Mellin con-
volution operator plus a compact perturbation. Earlier types of results for such
operators can then be brought to bear to analyze the second kind reformulation
(3.32) of Kw = g.

A collocation method with splines is de�ned for solving (3.31), although
modi�cations depending on some unknown index i� � 0 must be introduced. For
the error in solving for w, it can be shown that if q is chosen su�ciently large, and
if i� is chosen su�ciently large, then a collocation method with splines of degree
k and a uniform mesh h will have an error in L2 of O(hk+1). Generalizations of
this work are being given; for example, see Elschner and Stephan [33].

4 BIE Problems on Smooth Surfaces

The study of BIE on smooth surfaces in R3 is a well-developed area of classical
mathematics, and there are many references to it; for example, see Kress [48].
The general theory of numerical methods for solving BIE of the second kind with
a compact operator on smooth surfaces is basically well-understood. But signi�-
cant practical problems remain, especially concerning numerical integration. For
BIE of the �rst kind, only Galerkin methods are well-understood; and virtually
nothing is understood about collocation methods for such equations.

Recall the single layer and double layer potential operators introduced in
x2.3:

S (P ) =
Z
S

 (Q)

jP �QjdSQ; P 2 S (4.1)

K�(P ) =
Z
S

�(Q)
@

@nQ

�
1

jP �Qj
�
dSQ; P 2 S (4.2)

For S the smooth boundary of a closed bounded simply connected region in R3 ,

S;K : Hr(S)! Hr+1(S)
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are bounded operators. For S = U the unit sphere, S = 2K. Using a repre-
sentation of the function � 2 L2(U) in terms of its Laplace series expansion in
spherical harmonics, the mapping properties of S are transparent from the result

S : Y m
n ! 4�

2n+ 1
Y m
n

for spherical harmonics Y m
n of degree n. An extensive development of the map-

ping properties of S and K is given in [39]. In particular, both K and S are
compact on X to X , with X equal to either C(S) or L2(S).

We begin with BIE of the second kind, returning later with some brief remarks
on BIE of the �rst kind. For the interior Dirichlet problem (2.15), we represent
the solution u as a double layer potential,

u(P ) =

Z
S

�(Q)
@

@nQ

�
1

jP �Qj
�
dSQ; P 2 D

and we �nd � by solving the second kind BIE of (2.16),

(2� +K) � = f (4.3)

We can also obtain other BIE of the second kind, by other applications of the
various identities of x2.

4.1 Numerical methods

It is straightforward to speak of both Galerkin and collocation methods for solv-
ing (4.3). The convergence theory follows easily from the compactness of K and
S. The Galerkin and collocation methods are simply

(2� + PnK) �n = Pnf (4.4)

with appropriate choices of projection operators Pn. If we assume Pnx! x for
all x 2 X , then

k(I �Pn)Kk ! 0 (4.5)

In turn, this implies the existence and uniform boundedness of (2� + PnK)�1
for all n � N ; and moreover,

k�� �nk � 2�
(2� + PnK)�1

 k(I �Pn) �k (4.6)

The methods of most interest have been those of boundary element type de�ned
using collocation, for which we now describe a framework.

Let Tn =
n
�
(n)
k j k = 1; :::; n

o
denote a sequence of triangulations of S; and

let
h � hn = max

k
diam

�
�
(n)
k

�
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To re�ne a triangulation Tn, we usually subdivide each element of Tn by con-

necting the midpoints of the sides of �
(n)
k , in order to get the next triangulation

T4n. We usually have a parameterization of each element �
(n)
k , say

mk : b�(n)
k � R

2 1�1!
onto

�
(n)
k

Let p(x; y) be a polynomial over b�(n)
k . Then consider

P (mk(x; y)) = p(x; y)

as a `polynomial' over �
(n)
k .

For some degree r � 0, we de�ne Xn as the set of all functions that are
piecewise polynomial over the triangulation Tn of S. In our own work, we often
restrict the functions of Xn to be continuous; but this is sometimes too restric-
tive. As a particular example for which I have created a public domain package
BIEPACK [8], we take r = 2 and we base the collocation method on interpo-
lation at the vertices and midpoints of the sides of the elements of Tn. On the
boundary of bounded simply connected region, this leads to

nv = 2n+ 2

interpolation nodes. These are denoted collectively by Vn =
n
v
(n)
i

o
, and in

terms of the element �
(n)
k to which they belong by

fvk;1; :::; vk;6g

For interpolation over �
(n)
k , introduce `Lagrange basis polynomials' fLk;1; :::; Lk;6g

and write

Pnf (Q) =
6X

j=1

f (vk;j)Lk;j(Q); Q 2 �
(n)
k

with Pn the projection of C(S) onto Xn. Formulas (4.4)-(4.6) are valid with this
de�nition of Pn, and it is discussed at greater length in [11].

Also, we often approximate the surface S by interpolation, of the same or
greater degree. For a `piecewise polynomial surface' approximation of degree q �
1, interpolate the parameterization functionmk(x; y) by a polynomial of degree q

over b�(n)
k . In BIEPACK, we use quadratic interpolation. The panel method uses

piecewise constant interpolation of functions combined with piecewise planar
approximations of the surface; and it is widely used in the aircraft industry.

With piecewise quadratic interpolation de�ning the quadrature, and with the
re�nement of Tn to T4n based on subdividing each element into 4 new elements
based on connecting the midpoints of the sides, we have

max
vi

j�(vi)� �n(vi)j = O
�
h4 log h

�
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whereas
k�� �nk1 = O

�
h3
�

This appears to generalize to collocation with Xn composed of piecewise poly-
nomials of degree� r for some even r.

When approximating the surface S with a polynomial of degree q, with piece-
wise polynomial collocation of degree r, the best we have been able to prove is

k�� �nk1 = O
�
hminfr+1;qg

�
although empirical results at the node points are better than this. For r = q = 2,
we obtain something consistent with

max
vi

j�(vi)� �n(vi)j = O
�
h4
�

As references, see Wendland [86], Chien [20], [21], Atkinson [8], and Atkinson and
Chien [11]. For extensions of the package BIEPACK to a distributed processor
parallel computer, see Natarajan and Krishnaswamy [56].

4.1.1 The linear system

Consider the linear system associated with

(2� + PnK) �n = Pnf
We write

�n(Q) =

6X
j=1

�n (vk;j)Lk;j(Q); Q 2 �
(n)
k ; k = 1; :::; n

and solve

2��n

�
v
(n)
i

�
+

nX
k=1

6X
j=1

�n (vk;j)

Z
�k

Lk;j(Q)
@

@nQ

24 1���v(n)i �Q
���
35 dSQ

= f
�
v
(n)
i

�
; i = 1; :::; nv

(4.7)

The most time-consuming part of this method is the setup of the coe�cient
matrix, which involves the accurate and e�cient numerical integration of the
integrals over the elements. The cost of this is often an order of magnitude more
than that of the solution of the linear system. We consider this further in x6.

4.2 Spectral methods

For the equation (2� +K) � = f ,

2��(P ) +

Z
S

K(P;Q)�(Q) dSQ = f(P ); P 2 S (4.8)



20 Boundary Integral Equations

transform the integration region to the unit sphere U . Let S be given by a
smooth mapping

M : U
1�1!
onto

S

with a smooth inverse M�1. Then our BIE becomes

2�b�(P ) + Z
S

bK(P;Q)b�(Q) dSQ = bf(P ); P 2 U

b�(P ) � �(M(P )); bf(P ) � f(M(P ))bK(P;Q) = K(M(P );M(Q))JM (Q); Q 2 U
with Jacobian JM (Q). Denote the new integral equation by�

2� + bK� b� = bf (4.9)

Let XN denote all spherical polynomials of degree� N , which has dimension
dN � (N + 1)

2
. The standard orthogonal basis is the set of spherical harmonics

fY m
n (�; �) j 0 � n � N; �n � m � ng

which we assume here are of norm 1. Also denote these by

f�k j 1 � k � dNg
Let PN denote the orthogonal projection of L2(U) onto XN . The Galerkin
method is simply �

2� + PN bK� b�N = PN bf
Write the numerical solution as

b�N (P ) =

dNX
k=1

�k�k

It is obtained by solving

2��i +

dNX
k=1

�k

�bK�k;�i

�
= (f;�i) ; i = 1; :::; dN

The coe�cients
�bK�k;�i

�
are double surface integrals; and as such, they must

be evaluated carefully to have a Galerkin method of acceptable cost.
For the speed of convergence, say on C(U),

k�� �Nk1 � 2�
(2� + P

N
K)�1

 k(I �PN
) �k1

For � 2 C [`;](U), a H�older space of `-times di�erentiable functions with index
, and for S su�ciently smooth, we have

k�� �Nk1 � O
�
N�(`+�0:5)

�
(4.10)

For this, see [5], [6]. For discrete versions of this Galerkin method, see Ganesh
et al. [34].
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4.3 First kind BIE

There is a well-developed theory of Galerkin methods for those BIE which can
be regarded as strongly elliptic pseudo-di�erential equations on suitable Sobolev
spaces. The most studied of such equations is

S (P ) �
Z
S

 (Q)

jP �QjdSQ = f(P ); P 2 S

In this, we usually assume S is the boundary of a bounded simply-connected
D � R

3 , and we assume S is as smooth as needed. The basic paper in the study
of this equation is that of Nedelec [57].

Nedelec shows that S : H� 1

2

1�1!
onto

H
1

2 and

(S'; ') � c k'k2� 1

2

; ' 2 H� 1

2 (4.11)

with (�; �) denoting the extension of the usual inner product on L2(S) to H
1

2 �
H� 1

2 . Then he applies the standard theory of �nite element methods to obtain
a convergent �nite element Galerkin method.

Using a triangulation Tn =
n
�
(n)
k

o
of S, let Xn denote all functions which

are piecewise polynomial of degree � r in the parameterization variables. The
Galerkin method is de�ned by

(S n; ') = (f; '); ' 2 Xn
Then using Cea's Lemma, the existence and uniqueness of  n can be shown,
together with

k �  nk� 1

2

� c inf
'2Xn

k � 'k� 1

2

By standard arguments, this can then be extended to the more standard error
bound

k �  nk0 � chr+1 k kr+1 ;  2 Hr+1 (4.12)

Nedelec also considers the approximation of the boundary by interpolation,
of some degree k � 1. Denoting the resulting solution by b n, the convergence
results become  � b n ���1n 

0
� c

�
hr+1 k kr+1 + hk k k0

�
(4.13)

for  2 Hr+1 (S). In this, �n is a special map from the interpolating surface to
the original surface S.

These results generalize to more general strongly elliptic pseudo-di�erential
operator equations. For example, see Wendland [87], [88]. For Galerkin methods
based on using spherical polynomials as the approximants, see [19].

Unfortunately, almost nothing is understood of collocation methods for solv-
ing BIE of the �rst kind on smooth surfaces. In [10]x9.2.3, we give some numerical
experiments for some collocation methods for such BIE.
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5 BIE Problems on Piecewise Smooth Surfaces

When S is only piecewise smooth, the most studied BIE is (2� +K) � = f;

K�(P ) =
Z
S

�(Q)
@

@nQ

�
1

jP �Qj
�
dSQ + [2� �
(P )] �(P ); P 2 S (5.1)

which can arise from either the interior Dirichlet problem or the exterior Neu-
mann problem. The �rst important paper in the study of the numerical analysis
of this equation is Wendland [85]. In it, he gives detailed analyses on the map-
ping properties of single and double layer operators, including showing that K is
a bounded map of C(S) to C(S). The collocation methods studied were those
based on piecewise constant and piecewise linear interpolation. More recently,
major extensions have been given by J. Elschner, for Galerkin methods, and
A. Rathsfeld, for collocation methods. A related discussion is given in Vainikko
[83]. We begin with a description of the ideas of Wendland, and then we describe
briey some of the ideas of Elschner and Rathsfeld.

The properties Wendland assumed for the surface are still those used for most
error analyses. In essence, S is assumed to be piecewise smooth,

S = S1 [ � � � [ SJ
with each Sj the smooth image of a planar polygonal region. In all cases, the
interior solid angle 
(P ) is assumed to satisfy

0 < 
(P ) < 4� (5.2)

Also, each face Sj is assumed to have a piecewise smooth boundary with no
cusps. A more precise description of the properties of each Sj is given in [85].
The surface S is triangulated as in the case of a smooth surface S,

S =
n[

k=1

�
(n)
k

with the triangulation Tn =
n
�
(n)
k

o
`respecting the edges and corners' of S.

We let Xn be a space of piecewise polynomial functions of some degree� r,
as in x4. These functions may be restricted to be continuous; but if they are
only piecewise continuous, the space for the error analysis must be enlarged from
C(S), much as is discussed in [13]. Let Pn denote the interpolatory projection
of C(S) onto Xn, and then the collocation method for solving (2� +K) � = f is
given by

(2� + PnK) �n = Pnf (5.3)

The analysis of Wendland [85] is based on a critical pair of assumptions:

1. At each point P 2 S, the tangent cone is convex or its complement is
convex;
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2. The surface angles and interpolating projections must satisfy

sup
P2S

j2� �
(P )j sup
n�1

kPnk < 2�

With piecewise constant interpolation and piecewise linear interpolation (at the
vertices of a triangular element), this last assumption is always true. A conver-

gence theory can then be based on the geometric series theorem for (2� + PnK)�1,
localized to corners and edges of S. This work also assumes well-behaved solu-
tion functions, so that uniform meshes work well in creating accurate approxi-
mations of the unknown function �. For some extensions of this work to higher
order methods, see [11].

5.1 Galerkin methods

When S is a polyhedral Lipschitz boundary, Elschner [30] gives additional theory
on the properties of K. He localizes the operator K to the vertices of S and then
shows the localized operator can be regarded as a Mellin convolution operator
with an operator valued kernel function. He then uses results for such operators
to look at the solvability properties of (2� +K) � = f , including obtaining reg-
ularity results for the solution �. In [31], he gives a general theory for Galerkin
boundary element methods. This includes using a graded mesh to compensate
for singular behaviour in the solution � in the vicinity of edges and corners of S.

Elschner requires that the localized version of K on each in�nite cone gen-
erated at each corner of the surface S satisfy a �nite section assumption. This
amounts to something akin to the invertibility of the �nite section equation in
the planar case, as discussed earlier in x3.1 for (3.29)-(3.30). This �nite section
assumption is known to be true in either of two cases (assuming the surface is
Lipschitz), and these are cases also covered by the analyses of Wendland and his
co-authors.

1. Either the interior or the exterior solid tangent cone is convex at each point
of the surface; or

2. The surface S is made up of faces that are parallel to one of the three
coordinate planes in R3 .

With the �nite section assumption, the author constructs a mesh which is graded
towards each edge of S, and it is doubly-graded towards the vertices of S. The
subspace Xn is de�ned as the set of piecewise polynomial functions degree� r;
and there is no continuity restriction on the approximants in Xn. With a properly
graded mesh, Elschner is able to prove stability of a Galerkin method and to show
an optimal order of convergence:

k�� �nkL2(S) = O
�
m�(r+1)

�
; n = O

�
m2
�

(5.4)

The grading is of the same algebraic type as used for planar problems and de-
scribed by (3.25).
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5.2 Collocation methods

When S is a polyhedral Lipschitz boundary, A. Rathsfeld [66] gives a general
theory for collocation boundary element methods for solving (2� +K) � = f .
This also includes using a graded mesh to compensate for singular behaviour in
the solution � in the vicinity of edges and corners of S. As with the analysis of
Elschner for Galerkin methods, Rathsfeld makes a \�nite section" assumption
on the localizations of K.

Rathsfeld uses a graded mesh, similar to that in Elschner's Galerkin methods.
For some r � 0, de�ne Xn as the functions of degree� r in the parameterization
variables on each face of S. But as in the planar case, this is too general to allow
a successful error analysis for collocation methods. In the vicinity of edges and
corners of S, special modi�cations of the approximating space Xn are needed;
and the collocation nodes are chosen with some care as well. With this modi�ed
approximating subspace Xn, Rathsfeld proves convergence and stability of the
collocation scheme, with

k�� �nk1 = O
�
m�(r+1)

�
; n = O(m2) (5.5)

In the work of Elschner and Rathsfeld, the authors study the double layer
integral operator K of (5.1) by localizing it to each corner of the polyhedral
surface S. Denote by � the in�nite cone determined by a generic corner P0, and
consider K � W de�ned over �. Let � intersect a unit sphere centered at P0,
and call this intersection . Parameterize  by !(s), 0 � s � L. Write a typical
point on � as P = r!(s). For g 2 C0(�),

Wg(r!(s)) =

Z 1

0

�
B
� r
�

�
g (�!(�))

�
(!(s))

d�

�
(5.6)

with B(t) an operator on C() to C():

(B(t)h) (!(s)) =
Z L

0

h(!(�))
tn!(�) � !(s)
jt!(s)� !(�)jd�; t � 0

The equation (2� +W) � = f is a Mellin convolution equation using the operator-
valued Mellin convolution kernel B. The authors use properties for such operators
to obtain convergence and stability results for the numerical solution of bound-
ary element methods for solving (2� +W) � = f . This is then used in obtaining
a solvability theory for the original integral equation (2� +K) � = f , including
regularity results for the solution �.

5.2.1 An alternative framework

Using results on the solvability of the associated boundary value problems for
�u = 0, combined with the Green's representation formulas, one can obtain
results on solvability of some BIE, including regularity results on their solutions.



Kendall E. Atkinson 25

For such an approach, see von Petersdor� and Stephan [62]. For an introduction
to other graded mesh methods and to hp-versions of BIE methods, see Stephan
[80] and Stephan and Suri [81].

6 BIE on Surfaces - Other Aspects

There are aspects of the numerical solution of BIE on surfaces which become
a source of di�culty because of the rapid increase in cost associated with the
surface S being two dimensional. These di�culties are related primarily to the
iterative solution of the associated linear system and the calculation of the surface
integrals in that system.

The linear system associated with the quadratic collocation method for (5.3)
is given by

2��n

�
v
(n)
i

�
+

nX
k=1

6X
j=1

�n (vk;j)

Z
�k

Lk;j(Q)
@

@nQ

24 1���v(n)i �Q
���
35 dSQ

+
h
2� �
(v

(n)
i )

i
�n

�
v
(n)
i

�
= f

�
v
(n)
i

�
; i = 1; :::; nv

(6.1)

and we denote it by

(2� +Kn)vn = yn (6.2)

There remains the problem of estimating 
(v
(n)
i ). Note that when � � 1; it

follows that (2� +K) � = 4�. Using this, the solid angle can be approximated
by


(v
(n)
i ) �

nX
k=1

6X
j=1

Z
�k

Lk;j(Q)
@

@nQ

24 1���v(n)i �Q
���
35 dSQ (6.3)

Some discussion of this is given in [11].

Two-grid iteration methods for solving the system (6.2) are examined in [9] ,
and multigrid methods are examined in Hackbusch [40]. A general examination
and comparison of these and other iteration methods is given in Rathsfeld [68].
For problems over smooth surfaces S, there is no di�culty in applying any of
these methods; and their error analysis is relatively straightforward. For piece-
wise smooth surfaces, one must \precondition" the system. To do this, we can
\solve exactly" the portion of the linear system corresponding to the nodes on
the surface that are at an edge, a corner, or are nearby to such. Examples of
this are given in [9] and [68].

For other discussions of iteration methods for solving discretizations of BIE,
see Schippers [76], Hebeker [42], Atkinson and Graham [12], Vavasis [84], and
Petersdorf and Stephan [64], [63], Kelley [46], Kelley and Xue [47]. An interesting
discussion is given in Edelman [28] of the signi�cance of BIE within the numerical
linear algebra of dense linear systems.
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6.1 Numerical integration

In (6.1), the integrals

Z
�k

Lk;j(Q)
@

@nQ

24 1���v(n)i �Q
���
35 dSQ (6.4)

must be evaluated numerically in all but the simplest cases. The functions
Lk;j(Q) are \Lagrange basis functions" for quadratic interpolation over �k. [In
the case of piecewise constant interpolation over polyhedral surfaces S, these
integrals can be done analytically.] These are the most time consuming part of
most boundary element codes. We divide the evaluation of them into two cases.

Case (a). Let v
(n)
i 2 �k. Then the integrand in (6.4) is singular. This

appears to be a di�cult integral, but there is a simple �x, called the \Du�y
transformation". Consider the integral

I =

Z
�

g(s; t) d�

with � the unit simplex in the plane:

� = f(s; t) j 0 � s; t; s+ t � 1g
Further assume the function has a point singularity at the origin. Introduce the
change of variables wh

s = (1� y)x; t = yx; 0 � x; y � 1

I =

Z 1

0

Z 1

0

xg ((1� y)x; yx) dx dy

When the original integral arises from a collocation integral of either single or
double layer type, then the new integrand contains no singularity, including in its
derivatives. Then simply apply Gaussian quadrature to both integrals, usually
with only a few nodes (e.g. � 5) in each direction. For a complete discussion
and extension to other singular integrals, see Schwab and Wendland [78].

Case (b). Let v
(n)
i =2 �k. Then the integrals (6.4) are nonsingular. However,

they vary from being almost singular, when v
(n)
i is near �k; to having very

well-behaved integrands, when v
(n)
i is distant from �k. Note that of the O(n

2)
integrals in the collocation matrix, only O(n) are of singular type; and therefore,
most of the cost of setting up the matrix for (6.1) is in these nonsingular integrals.

An e�cient quadrature method with an exponential rate of convergence is
de�ned and analyzed in Schwab [77]. We have used the following somewhat
simpler schema in [8], and it is reasonably e�cient in most cases. Introduce a
parameter � to indicate a number of level of subdivisions of �k for a composite
quadrature scheme. For the basic quadrature scheme, we use the 7-point rule
T2:5-1, of degree of precision 5, from Stroud [82].
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Table 1. Max errors in �n

n � = 0 � = 1 � = 2 � = 3
8 3.63E�2 3.30E�2 3.31E�2 3.31E�2
32 3.78E�3 3.79E�3 3.78E�3 3.78E�3
128 5.49E�4 2.92E�4 2.91E�4 2.91E�4
512 2.62E�4 1.88E�5 1.87E�5 1.87E�5

Table 2. Timings for \graded" mesh quadrature (sec)

n � = 0 � = 1 � = 2 � = 3 Iteration

8 0.85 0.85 1.9 4.0
32 3.9 6.1 22.0 59.5 < 0:01
128 31.2 42.7 123 439 0.13
512 388 424 754 2240 2.05

1. If 0 < dist (vi;�k) � h, use � levels of subdivision of �k and apply a given
quadrature scheme to each of the resulting 4� subelements.

2. If h < dist (vi;�k) � 2h, use �� 1 levels of subdivision of �k and apply a
given quadrature scheme to each of the resulting 4��1 subelements.

3. Continue this until no subdivision of �k takes place, so that the quadrature
scheme is applied directly to �k.

As n increases to 4n to 16n, it seems best to increase � to �+ 1.

We give an example of solving (2� +K) � = f for an exterior Neumann
problem on an ellipsoid. Table 1 contains the errors for varying �, Table 2
contains timings for the composite scheme described above, and Table 3 contains
timings when � levels of subdivisions are used over all triangular elements. The
errors in Table 1 are valid for both Tables 2 and 3; but the timings are far larger
for Table 3. The timings are for a Hewlett-Packard HP-720 workstation.

For other discussions of numerical integration over boundary elements for
solving integral equations on surfaces, see Chien [21] and Sauter and Schwab
[75].

Table 3. Timings using a uniform � levels of subdivision (sec)

n � = 0 � = 1 � = 2 � = 3
8 0.85 0.90 1.6 4.3
32 3.9 7.2 20.8 76.0
128 31.2 89.3 317 1230
512 388 1350 5030 19800
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6.2 Fast matrix-vector calculations

Consider a discretization of the single layer operator:

S�
�
v
(n)
i

�
�

nX
k=1

6X
j=1

�
�
v
(n)
k;j

� Z
�k

Lk;j(Q)���v(n)i �Q
���dSQ (6.5)

for i = 1; :::; nv, using a piecewise quadratic interpolation of �. Denote the vector

of values �
�
v
(n)
i

�
by �n, and let A�n denote the matrix multiplication inherent

in the above approximation. Then all iteration methods for solving a linear
system involving A, say Av = y, will involve repeated multiplications Aw for
various vectors w. To evaluate A explicitly requires O

�
n2
�
operations or more,

and to evaluate Aw requires 2n2 operations. Reducing the cost of computing
Aw is of little consequence if we must still evaluate A explicitly.

In the past ten years, several approaches have been used to speed the calcu-

lation of Aw, reducing it from O(n2) to O
�
n logd n

�
operations, for some small

integer d. The three main types of methods are as follows.

� Fast multipole methods

� Clustering methods

� Wavelet compression methods

With all of these methods, we produce a vector

u �Aw (6.6)

within an acceptably small error and at a cost of O
�
n logd n

�
operations.

6.2.1 Fast multipole methods

These were developed by L. Greengard and V. Rokhlin in a series of papers, and
they have become widely used in the past few years. For papers of Greengard
and Rokhlin, see [37], [38], and [71]; and for a paper dealing more explicitly with
BIE approximations, see Nabors et al. [55].

The problem as originally posed by Greengard and Rokhlin is to calculate
the potential at points �1; :::;�p as determined by charges of strengths q1; :::; qk
at k points Q1; :::; Qk:

�(�i) =
kX

j=1

qj
j�i �Qj j ; i = 1; :::; p (6.7)

Often f�ig = fQjg, with the proviso of omitting the term in the sum for j = i.
The size of k can be quite large, say k = 10; 000. The methods used depend on
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the use of spherical harmonics expansions and on clusterings of the points fQjg
according to their distance from �i.

Writing points using their spherical coordinates, let � = (r; �; �) and Q =
(�; �; �). Then for � < r,

1

j��Qj =
1X
n=0

Pn (cos )
��
r

�n
(6.8)

with  the angle between � and Q, and with Pn(u) the Legendre polynomial of
degree n. To give a avor to the method's techniques, we give one theorem from
the development of the method.

Theorem. Suppose that k charges of strengths q1; :::; qk are located at the points

Qi = (�i; �i; �i), i = 1; :::; k, and assume that �i < a, a given number. Then for

any � = (r; �; �) with r > a, the potential �(�) is given by

�(�) =

1X
n=0

nX
m=�n

Mm
n

rn+1
Y m
n (�; �) (6.9)

Mm
n =

kX
i=1

qi�
n
i Y

�m
n (�i; �i)

For any ` � 1, ������(�)� X̀
n=0

nX
m=�n

Mm
n

rn+1
Y m
n (�; �)

����� � A

r � a

�a
r

�`+1
(6.10)

A =

kX
i=1

jqij

The functions fY m
n (�; �)g are spherical harmonics of degree n and order m.

The formula (6.9) is called the multipole expansion of �(�). The fast multipole
method is based on creating graded subdivisions of space and to combine this
with approximations as in (6.10) so as to calculate an estimate of �(�) at p
points � in much fewer than O(pk) operations. An excellent introduction to this
is Greengard [37]Chap. 3.

6.2.2 Clustering methods

Assume the creation of a sequence of triangulations of S, much as in x4, x5; and
let each triangulation be a re�nement of the preceding one. Call these T0, T1, T2,
...,TI , with T0 = f�k j 1 � k � ng the �nest mesh, in keeping with the notation
in Hackbusch and Nowak [41]. For simplicity here, also assume S is polyhedral.
We restrict our interest to the single layer potential approximation of (6.5).
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Note that as the distance from vi is increased, the integrand becomes smoother.
For each element � in some Tl, with P =2 � , we expand the simple layer in a Taylor
series about the \centroid" Q� of � :

1

jP �Qj �
X
l2Im

�l(P ;Q� )�l (Q)

The degree of the Taylor series is m, and Im denotes an index set for the expan-
sion. The accuracy of this expansion will depend on the distance of P from Q� ,
the size of m, and the size of � . We call � a \cluster" of elements from the �nest
level T0.

Note that �l (Q) is independent of P and Q� , which is critically important
in obtaining a low operations count. The functions �l (Q) are to be simple
monomials in the components of Q, thus making them simple to integrate over
elements �k of T0 and thence over clusters from the coarser triangulations Tl,
some l > 0.

Let �n(Q) denote the piecewise quadratic

�n(Q) =
6X

j=1

�n (vk;j)Lk;j(Q); Q 2 �k; 1 � k � n

Let the cluster � consist of a set of elements from T0, say �1; :::;�p. ThenZ
�

�n(Q) dSQ
jP �Qj �

pX
j=1

�l(P ;Q� )
X
l2Im

Z
�j

�n(Q) �l (Q) dSQ

With preprocessing, we can evaluate all of the integralsZ
�j

�n(Q) �l (Q) dSQ

in O(n) operations, allowing both l and j to vary. Because both �n(Q) and
�l (Q) are polynomials in Q, these integrals are straightforward to evaluate.

For each point P = vi, we do an initial preprocessing to produce the needed
clustering of elements of T0, to have

S = [�1 [ � � � [ �c] [
�
�i1 [ � � � [�iq

�
with f�jg elements from various Tk with k > 0. Then we haveZ

S

�n(Q) dSQ
jP �Qj =

cX
j=1

Z
�j

�n(Q) dSQ
jP �Qj +

qX
j=1

Z
�ij

�n(Q) dSQ
jP �Qj

With a careful attention to detail and with preprocessing where possible, it is
possible to evaluate an approximation of [S�n (vi)] in O

�
n log3 n

�
operations.

The main reference to such clustering methods is Hackbusch and Nowak [41].
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6.2.3 Wavelet compression methods

The main idea is to use a wavelet basis such that the most of the elements of
the collocation and Galerkin matrix will be small enough to be neglected. Then
the cost of evaluating [S�n(vi)] will be only slightly larger than O(n) operations.
For some papers in this very recent topic, see Alpert et al. [1], Dahmen et al.
[27], Petersdor� and Schwab [60], [61], and Micchelli and Xu [54].
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