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Abstract� This paper considers the numerical solution of boundary integral equations of the
second kind� for Laplace�s equation �u � � on connected regions D in R� with boundary S� The
boundary S is allowed to be smooth or piecewise smooth� and we let f�K j � � K � Ng be a
triangulation of S� The numerical method is collocation with approximations which are piecewise
quadratic in the parametrization variables� leading to a numerical solution uN � Superconvergence
results for uN are given for S a smooth surface and for a special type of re�nement strategy for the
triangulation� We show u � uN is O	�� log �
 at the collocation node points� with � the mesh size
for f�Kg� Error analyses are given are given for other quantities� and an important error analysis
is given for the approximation of S by piecewise quadratic interpolation on each triangular element�
with S either smooth or piecewise smooth� The convergence result we prove is only O	��
� but the
numerical experiments suggest the result is O	��
 for the error at the collocationpoints� especially for
S a smooth surface� The numerical integration of the collocation integrals is discussed� and extended
numerical examples are given for problems involving both smooth and piecewise smooth surfaces�
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gration
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�� Introduction� In this work� we consider the numerical solution of boundary
integral equations of the second kind for solving Laplace�s equation �u � � on
connected regions D in R�� The collocation method with piecewise polynomial
approximations is the numerical method being analyzed� Because of the practical
need to use easily�computable approximations of the surface� we analyze the e�ect
of using interpolation to approximate the surface of the region� We also discuss the
e�ect of numerical integration of the collocation integrals�

A major consideration in the error analysis of numerical methods for these bound�
ary integral equations is whether the boundary of D� call it S� is smooth or piecewise
smooth� If S is smooth� then the associated integral operator is compact and there
is a wealth of results available for the error analysis� But if S is only piecewise
smooth� then the integral operator is not compact� and moreover� the operator can
be viewed as involving a Dirac delta function in its de	nition� In this case� other
methods of error analysis are required� The most widely used techniques originated
with Wendland
��
� in which he adapted and greatly extended a technique introduced
in 
��
 for the theoretical analysis of such integral equations for the planar Dirichlet
problem for Laplace�s equation� We use these ideas of Wendland in our analysis of the
collocation method given below in x�� Other approaches for this case are under devel�
opment� for example� see Elschner
��
 in which results of Chandler and Graham
��

for the planar problem are generalized to Galerkin methods for polyhedral boundaries
in R�� and see Rathsfeld
��
�

Two problems for Laplace�s equation and their associated boundary integral equa�
tions are studied in this paper�
P�� The interior Dirichlet problem� Let D be a bounded� open� simply connected
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region in R�� and let its boundary S be piecewise smooth� which is de	ned more
precisely in Section �� The problem is to 	nd u � C� �D� �C��D� such that

�u�A� � �� A � D

u�P � � f�P �� P � S

We assume u can be represented as a double layer potential�

u�A� �

Z
S

��Q�
�

��Q

�
�

j A �Q j
�
dSQ � A � D���

The density function � is determined from the integral equation

����P � �

Z
S

��Q�
�

��Q

�
�

j P �Q j
�
dSQ � 
�� ���P �
��P � � f�P �� P � S����

For notation� �Q denotes the unit normal to S at Q �if it exists�� pointing into
D� The quantity ��P � is the inner solid angle of S at P � S� and we assume

� � ��P � � ���

Symbolically� we write the integral equation ��� as

��� �K�� � f

Under suitable assumptions on S�

K � C�S�� C�S�

is a bounded linear operator�
P�� The exterior Neumann problem� Let D and S be as above� and let De �

R�n �D� the region exterior to D and S� The problem is to 	nd u � C� �De��C��De�
such that

�u�A� � �� A � De

�u�P �

��P
� f�P �� P � S

u�P � � O�j P j����j ru�P � j� O�j P j��� as j P j� ����

It can be shown that such a function u exists �under suitable assumptions on S
and f� and that Green�s third identity can be applied to u�

��u�A� �

Z
S

f�Q�
�

j A� Q jdSQ �
Z
S

u�Q�
�

��Q

�
�

j A�Q j
�
dSQ� A � D���

To 	nd u on S� we solve the integral equation

��u�P � �

Z
S

u�Q�
�

��Q

�
�

j P �Q j
�
dSQ � 
�� ���P �
u�P �

�

Z
S

f�Q�
�

j P �Q jdSQ� P � S���
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Then ��� gives u on De� Symbolically� we write ��� as

��� � K�u � Sf
with K as before and S the single layer potential integral operator�

The integral equations ��� and ��� are di�erent only in their right hand inho�
mogeneous term� With ���� we can study the error in the numerical solution of the
integral equation by using problems for which we know the true solution of ���� With
equation ���� we do not know the true solution in general �except when f � ��� and
thus the numerical solution must be checked indirectly by evaluating ��� numerically
and comparing it to a known solution u� This turns out to also be of interest� because
integral formulas like ��� are generally known to converge faster than is the density
function that solves the integral equation� A further discussion is given later�

In Section �� we describe brie�y the triangulation of the surface S� The colloca�
tion method and the surface approximation are based on piecewise quadratic isopara�
metric interpolation� and this is described in Section �� together with the numerical
integration methods used in evaluating the collocation integrals� The collocation me�
thod with S smooth is discussed in Section �� and numerical examples are given
in Section �� The corresponding results for the collocation method when S is only
piecewise smooth are given in Section � and Section �� Some of the methods of this
paper follow those of Atkinson
�� �
� but we also involve the new methods of analysis
given in Chien
�
� to improve on the error results of the earlier papers�

Although our analysis is for only quadratic approximation� the method being used
will generalize to other degrees of piecewise polynomial approximation� The di�culty
of our argument has led us to specialize to one case� and in addition� it is one of the
more important cases�

�� Preliminaries� We describe the triangulation scheme and associated inter�
polation and quadrature� The method being used was discussed in 
�� �
� and we
assume a familiarity with those papers� including the notation used in them�

As discussed in 
�
� we assume the surface S can be written as

S � S� � S� � � � � � SJ���

where each Si is a closed� �smooth� surface in R�� The only possible intersection
of a pair Si and Sj is to be along a common portion of the edges of these two
sub�surfaces� Assume that for each Sj � there is a mapping

Fj � Rj
�

���
onto Sj � � � j � J ����

where Rj is a polygonal domain in the plane and Fj � C��Rj�� In this case� we say
S is piecewise smooth� By a smooth surface� we mean that for each point P � S�
there is a neighborhood on S of P � with the neighborhood having a local six�times
continuously di�erentiable parametrization in R��

The surface S of ��� is divided into a triangular mesh

f �K�N j � � K � N g���

for a sequence N � N�� N�� � � �� Each Sj is to be broken apart into a set of
nonoverlapping triangular shaped elements �K�Nj �s� about which we say more below�
In referring to the element �K�N � the reference to N will be omitted� but understood
implicitly� De	ne the mesh size of ��� by

�N � max
��K�N

diam��K��
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diam��K� � max
p�q��K

j p� q j ����

Let � denote the unit simplex in the st � plane

� � f �s� t� j � � s� t� s� t � � g �
Let ��� � � � � �� denote the three vertices and three midpoints of the sides of ��
numbered according to Figure ��
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Fig� �� The unit simplex

One way of obtaining the triangulation ��� and the mappings from � to each
�K is by means of the parametric representation ��� for the region Sj of ����
Triangulations of Rj map onto triangulations of Sj � Since the Rj�s are polygonal
domains and can be written as a union of triangles� without loss of generality� we
assume in this paper that the Rj�s are triangles � A paraboloid with top is a good
example of an S that satis	es our assumptions� but a circular cone is an example of
an S for which some of above assumptions are not valid� because of the discontinuity
of the gradient at the vertex�

Let b�K be an element in the triangulation of Rj� and let bv�� bv�� and bv� be
its vertices� De	ne

mK �s� t� � Fj�ubv� � tbv� � sbv��� u � �� s � t � �s� t� � �����

and let �K be the image of b�K under this mapping� Also� if any two elements
in this triangulation have a side in common� then their intersection will be an entire
side of both triangles� Most surfaces S of interest can be decomposed as in ���� with
each Sj representable as in ���� Also� the surface S could be smooth� and we would
often still want to decompose it as in ����

The mapping ���� is used in de	ning interpolation and numerical integration on
�K � Introduce the node points for �K by

vj�K � mK ��j� j � �� � � � � �
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Fig� �� Re�nement

Collectively� the node points of the triangulation f�K g will be denoted by

f vi j � � i � Nv g�

with Nv the number of distinct node points�
The sequence of triangulations ��� will usually be obtained by successive re	ne�

ments� The re	nement process is based on connecting the midpoints of the sides of a
given element b�K� Given f bv�� � � � � bv� g� connect bv�� bv�� bv� by straight lines� as in
Figure �� producing four new triangular elements� The new elements all are congru�
ent� and they are similar to b�K � More importantly� any symmetric pair of triangles�
as shown in Figure �� have the following property�
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Fig� �� A Symmetric pair of triangles

bv� � bv� � ��bv� � bv�� and bv� � bv� � ��bv� � bv������

The assumptions on S and the node points that we made in this section are
for the use of quadratic interpolation� There are other degrees of interpolation that
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can be used� and the assumptions on the smoothness of S and the de	nition of
the nodes will change appropriately� But the general process of re	nement will still
remain the same� and we still subdivide �K�s in the same way as we do for the
quadratic interpolation�

To de	ne interpolation� introduce the six basis functions for quadratic interpola�
tion on �� Letting u � �� �s � t�� de	ne

l��s� t� � u��u� ��� l��s� t� � t��t� ��� l��s� t� � s��s � ���
l��s� t� � �tu� l��s� t� � �st� l��s� t� � �su�

De	ne a corresponding set of basis functions f lj�K�q� g on �K �

lj�K�mK �s� t�� � lj�s� t� � � � j � � � � � K � N �

Given a function f � C�S�� de	ne

PNf�q� �
�X

j��

f�vj�K�lj�K�q� � q � �K �����

for K � �� � � � � N � This is called the piecewise quadratic isoparametric function
interpolating f on the nodes of the mesh f�K g for S�

It is straightforward that PN is a bounded projection operator and kPNk � �	��
Also� for any f � C��S��

kf �PNfk� � O�b��N �����

where b�N is the mesh size of the triangulation f b�K�N g of Rj�s� See 
�
�
Other kinds of interpolation can be used� such as piecewise cubic isoparametric

interpolation� In this case� we need ten node points� ��� � � � � ���� and ten basis func�
tions for the interpolation on �� The error analysis is the same� although some what
more complicated�

We also use the same quadratic interpolation scheme to construct an approximate
surface eS for S� The approximate surface eS is composed of elements e��� � � � � e�K�
with e�K an interpolant of �K� Write

mK�s� t� �

�� x�K�s� t�
x�K�s� t�
x�K�s� t�

�� � �s� t� � �����

The reference to K will be omitted� but understood implicitly� De	ne

emK �s� t� �
�X

j��

mK ��j�lj�s� t� �

���
P�

j�� x
�

K��j�lj�s� t�P�

j�� x
�

K��j�lj�s� t�P�

j�� x
�

K��j�lj�s� t�

��� �s� t� � �����

Thus� emK�s� t� interpolates mK�s� t� at f ��� � � � � �� g� and each component is
quadratic in �s� t��

We introduce two major numerical integration schemes that we have used� The
	rst numerical integration method is the ��point ruleZ

�

h�s� t� d� 	 �

�

�X
j��

h��j� �����
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This method has degree of precision two� integrating exactly all quadratic polynomials�
Chien
�
 shows that the associated composite rule over S is O�b��N � where b�N is

the mesh size of fb�Kg�
The ��point rule is mainly for computing integrals if the integrands are continu�

ous� In order to get the above results� the integrands are required to be four times
continuously di�erentiable� If the integrands are continuous or smooth on the �K �
but there is a nearby singularity� we need to use a better numerical integration me�
thod� The second method is the rule T����� from Stroud
��� p� ���
�Z

�

h�s� t� d� 	
	X

j��

wjh�rj� �����

the weights wj and nodes rj given in the above reference� This formula has degree
of precision 	ve�

�� Collocation on Smooth Boundaries� Our collocation method for solving
an integral equation �
 �K�� � g can be written as

�
� PNK��N � PNg � 
 � ������

The function g can be the function f of ��� or Sf of ���� We discuss results for
this approximation� and then later in the section� we give error results for the e�ect
of using an interpolatory approximation of the smooth surface S�

An important auxiliary solution for the collocation method is the iterated collo�
cation solution�

 �N �
�



�g �K�N �

It satis	es the equations

�
 �KPN � �N � g����

PN  �N � �N����

The questions of stability for ���� and ���� are linked by the identities

�
� KPN��� � �




I �K�
� PNK���PN 
����

�
� PNK��� � �




I �PN �
� KPN���K


The solvability of ���� is determined from the standard theory for projection
methods� for example� see Atkinson
�� pp� �����
� With the assumption of �a� com�
pactness for K � C�S� � C�S�� and �b� pointwise convergence on C�S� of the
projections PN to I� we have that

k�I �PN �Kk� � as n��

From this� we have the standard result that if �
 � K��� exists on C�S�� then
�
�PNK��� exists and is uniformly bounded for all su�ciently large N � say N 
 N��
The existence of uniform boundedness of �
� KPN ��� then follows from �����
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For the error in �N and  �N � use

� � �N � 
�
 � PNK����� �PN��
� �  �N � ��
 � KPN���K��� PN��

The quantity K���PN�� often converges to zero more rapidly than does ��PN��
Using ����� this will show that �N is superconvergent to � at the collocation node
points� We make use of this in the following�

Theorem ���� Consider the integral equation ��� and ��� with solution �� Let
S be a smooth surface in R�� and assume the unknown function � � C��S�� Then

max
��i�Nv

j ��vi� � �N �vi� j � O
�b��N log b�N	����

where b�N is the mesh size of the triangulation
nb�K�N

o
of the Rj�s�

Proof� �a� The major part of the proof is concerned with measuring K�I �
PN ���P � for all P � vi� a node point� Later in the proof� we use this to prove �����
Note we use the exact surface S in this theorem� Since the solid angle ��P � � ��
for every P on a smooth surface� the integral equation ��� can be simpli	ed as

����P � �

Z
S

��Q�
�

��
Q

�
�

j P �Q j
�
dSQ � f�P �� P � S�

Using the triangulation scheme in Section �� the compact operator K can be
written as

K��P � �
X
K

Z
�

��mK �s� t��
�

��
Q

�
�

j P �mK �s� t� j
�
j DsmK �DtmK j d�����

For Q � mK �s� t��

��s� t� � �
Q
� � DsmK �DtmK

j DsmK �DtmK j
with the sign chosen so that �

Q
points into the bounded domain D�

Without loss of generality� we assume the sign of �
Q

is always positive� and ����
becomes

K��P � �
X
K

Z
�

��mK �s� t��
�DsmK �DtmK� � �P �mK �s� t��

j P �mK�s� t� j� ds dt����

In order to measure the error K�I�PN ���P � for P a node point� we need to examine
the local error which is contributed by each �K �

For each �K� the integrand of the equation ���� has one singularity at P when
P � �K� and it is smooth over �K with P 
� �K � although it is increasingly
peaked as P and �K become closer together� We 	rst compute the error for those
�K �s which contain P �

For simplifying notation� we assume P � ��� �� �� and mK��� �� � ��� �� ���
The error in integrating over �K equalsZ

�

���mK �s� t��� PN��mK �s� t���
�DsmK �DtmK� �mK �s� t�

j mK �s� t� j� ds dt����
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This integral exists even though j mK��� �� j� �� To see this� use the Taylor error
formula for the xiK about �s� t� � ��� ��� Then ���� equalsZ

�

h�s� t� b�	�
g�s� t� b��� d������

where h and g are polynomials in s and t� and their coe�cients are of size O�b�	�
and O�b���� respectively� Also� h and g are polynomials of degrees two and three�

respectively� which shows the existence of integral ����� and it is O�b��� 
When

speaking of an order of convergence� say one based on b�� the order of convergence is
uniform with respect to any absent variable or index�


When P 
� �K � P �mK never equals zero for �s� t� � �� The kernel function�
��s� t��

��s� t� �
�DsmK �DtmK � � �P �mK �s� t��

j P �mK �s� t� j�
is smooth� Compute the partial derivative �s before expanding ��s� t� about ��� ���

�s�s� t� �

Ds�DsmK �DtmK �
 � �P �mK�� �DsmK �DtmK � �DsmK

j P �mK j�

� �

�DsmK �DtmK� � �P �mK �
 
DsmK � �P �mK�


j P �mK j�

�

Ds�DsmK �DtmK �
 � �P �mK�

j P �mK j�

� �

�DsmK �DtmK� � �P �mK �
 
DsmK � �P �mK�


j P �mK j�
The term �DsmK�DtmK��DsmK was dropped because �DsmK�DtmK � �DsmK �
Also

j �DsmK �DtmK� � �P �mK � j � j DsmK �DtmK j � j P �mK j � j cos � j
� is the angle between the vectors DsmK � DtmK and P � mK � and � is a
function of s and t�

j cos � j � j P �mK �s� t� j � constant � �s� t�����

See 
��� p� ���
� Therefore� �s is O�b��	d�K� where dK �j P � mK��� �� j� Use a

similar calculation� �t is also O�b��	d�K�� We now expand ��s� t� about ��� ��
and have the following formula�

��s� t� � ���� �� � O�b��	d�K������

The error of ��mK � �PN��mK � is

��mK �� PN��mK � � HK�s� t� � O�b�������

where

HK�s� t� �
�

�!

���s �
�s

� t
�

�t
��xi��� ���

�X
j��

�sj
�

�s
� tj

�

�t
��xi��� ��lj�s� t�

�� �
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Note that ���� �� and HK�s� t� are O�b��	d�K� and O�b���� respectively�
Combining ���� and ����� we haveZ

�

��s� t� ���mK �� PN��mK �� d� �

Z
�



���� �� �O�

b��
d�K

�

�
HK�s� t� d�

� O�
b��
d�K

� � O�
b��
d�K

�

for every �K which does not contain P �
We now add all errors contributed by each �K� Let T � be the set of �K �s

which contain P � and let T be the set of the remaining �K �s� which do not contain
P � Then�

K��� Pn���P � �

Z
S

��P� Q� ���Q� �PN��Q�� dSQ

�
X

�K�T �

Z
�

��s� t����mK �� PN��mK �� d� �

X
�K�T

Z
�

��s� t����mK �� PN��mK �� d�

� O�b��� � X
�K�T

Z
�

��s� t����mK � �PN��mK �� d�����

O�b��� is contributed by �K �s which are in T �� and T � has at most six elements�

The error contributed by each �K in T is O�b��	d�K�� Examining the error
carefully� we 	nd that cancellation happens on each symmetric pair of triangles� Thus�
for the dominant terms in the error

���� ��Hi�s� t� � ���� ��Hj�s� t� � �

if �i and �j are a symmetric pair of triangles� This improves the error from

O�b��	d�K� to O�b��	d�K� for each �K that is part of a symmetric pair of triangles�
Let T� be the set of these kinds of triangles� Let T� be the set of triangles that are
not in T��

The error being contributed by triangles in T� arises from the term

j ���� �� �HK�s� t� j

�

�����DsmK��� ���DtmK��� ��� � �P �mK��� ���

j P �mK��� �� j�
���� j HK�s� t� j

�

���� j �DsmK��� �� �DtmK��� ��� j � j �P �mK��� ��� j � cos �
j P �mK��� �� j�

���� j HK�s� t� j

� j �DsmK��� ���DtmK ��� ��� j
j P �mK��� �� j j HK�s� t� j � O�

b��
dK

��

See ����� Thus� the error analysis has been improved from O�b��	d�K� to O�b��	dK�
which is contributed by each triangle in T��
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Let

d�P � � d � min f dK j P 
� �K� K � �� � � � � N g �

For simplicity� we take dK
�
� d� �d� � � �� depending on how far the �K is from the

point P � 
A somewhat more complicated argument can be based on a lower bound of

a similar type for dK �
 Let r � b�	d� which is 	nite for our uniform mesh subdivision

scheme� and d � O�b�N �� Note the indexing ��� � � � ��N does not indicate distance
from P � But� there is an arrangement of f�Kg where the number of triangles at a
distance R is proportional to R� with R � d� �d� �d� � � ��

The number ci of triangles in T� at a distance i � d is proportional to i for
i � �� � � � � tj� Note that for some integer tj� tj � d is the longest possible distance
from P to triangles in Rj� Adding the error contributed by each triangle in T�� we
have X

K

O�
b��K
d�K

� �

tjX
i��

ci �O�
b��

�i � d�� � � O�b��� tjX
i��

r�
i

i�
� O�b�� log b�� �

For the triangles in T�� the error contributed by each of them is O�b��K	dK��
The number of triangles of this type at a distance i � d is a 	nite number� and it
usually is two or three� but the proof is omitted� Therefore�

X
K

O�
b��K
dK

� �

tjX
i��

c�j �O�
b��
i � d � � O�b��� tjX

i��

r
�

i
� O�b�� log b��

where c�j is either two or three� This completes the proof that

K�I � PN ���P � � O�b�� log b������

uniformly for P a node point in the triangulation f�K�Ng of S� 
This form of
proof is also used in some of the remaining proofs of this paper�


�b� To show ����� we 	rst note that the error equation for the iterated collocation
solution  �N is given by

��� � KPN ��� �  �N � � �K�I � PN ������

The linear system associated with this is

��� �KN �eN � �
N����

with

eN�i � ��vi� �  �N �vi� � ��vi� � �N �vi�


N�i � K�I �PN ���vi� � i � �� � � � � Nv �

The matrix of coe�cients �� � KN is also the same as that for the linear system
associated with the collocation equation �����

As noted earlier following ����� ��� � KPN ��� is uniformly bounded for all
su�ciently large N � Also� since the iterated collocation equation can be considered
as being a Nystr"om method� it is a standard derivation that

k��� �KN ���k � k��� � KPN ���k
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where the matrix norm is the standard row norm� Combining these results�

k��� �KN ���k � c � � � N 
 N�����

for some su�ciently large N� and some c � ��
Using this result with ����� and using ���� to bound k
Nk�� we have the desired

result �����

���� The single layer integral� For the exterior problem� we need to evaluate
the corresponding single layer integrals on the right hand side of ���� Write

Z
S

f�Q�

j P �Q jdSQ 	
NX

K��

Z
�

f� emK �s� t��

j P � emK �s� t� j j Ds emK�s� t� �Dt emK �s� t� j d�����

where P is one of node points� Note we are including the use of the approximating
surface�

We can see the integrand in ���� varies from singular to quite smooth� To handle
this varied behavior� we use two ways to study errors� The 	rst case is for those �K �s
that contain the point P � and the second case is for the remaining �K �s�

Lemma ���� Let P be a node point in �K for some K� ThenZ
�

f�mK �s� t��

j P �mK�s� t� j j DsmK �s� t��DtmK �s� t� j d��
Z
�

fN � emK�s� t��

j P � emK�s� t� j j Ds emK �s� t��Dt emK �s� t� j d� � O�b��K�

where b�K is the diameter of b�K�
Proof� There are two cases� The 	rst case is that P is a vertex in some �K �

and the second case is that P is a midpoint of a side of �K�
Begin with the 	rst case and� without loss of generality� assume that

P � mK ��� �� � emK��� �� � �p�� p�� p���

Before proving the theorem� we show thatZ
�

�

j P �mK�s� t� j d� � O�b���K ��

ComputeZ
�

�

j P �mK�s� t� j d�

�

Z
�

�


�p� � x��s� t��� � �p� � x��s� t��� � �p� � x��s� t���
���
d�

�

Z
�



�sx�s��� �� � tx�t ��� ���

� � �sx�s��� �� � tx�t ��� ���
�

��sx�s��� �� � tx�t ��� ���
� � O�b��K�

i����
d�
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See ���� for xi�s� After integrating the dominant part of the above equation by using
polar coordinates in the st�plane about ��� ��� we obtainZ

�

�

j P �mK�s� t� j d� � O�b���K ��

Now� we break the error analysis into three parts�Z
�

f�mK �s� t��

j P �mK�s� t� j j DsmK�s� t� �DtmK �s� t� j d��
Z
�

fN � emK�s� t��

j P � emK�s� t� j j Ds emK�s� t� �Dt emK �s� t� j d�

� E� � E� � E�

with

E� �

Z
�

f�mK �s� t�� � fN � emK�s� t��

j P �mK�s� t� j j DsmK �s� t��DtmK�s� t� j d�����

E� �

Z
�

fN � emK �s� t��

j P �mK�s� t� j �j DsmK�s� t� �DtmK �s� t� j

� j Ds emK �s� t��Dt emK�s� t� j � d�����

E� �

Z
�

�
�

j P �mK�s� t� j �
�

j P � emK �s� t� j
�
�

j Ds emK�s� t� �Dt emK �s� t� j fN � emK �s� t�� d�����

In equation �����

j E� j � O�b��K � �O�b��K� �
Z
�

�

j P �mK�s� t� j d� � O�b��K� �O�b���K � � O�b��K �

For the equation ����� we can easily see it has order three�

j E� j � max
s�t��

��� j DsmK �s� t��DtmK�s� t� j � j Ds emK�s� t� �Dt emK �s� t� j
��� �

Z
�

fN � emK�s� t��

j P �mK �s� t� j d� � O�b��K � �O�b���K � � O�b��K�

For E�� expand each xi about ��� ��� and then integrate it over �� With a
very lengthy calculation� we can show that E� is of order three� See 
�
�

If P is a midpoint of a side of �K � we split � into two triangles� �� and ���
and we put the singular point at a vertex in each of the new triangles� see 	gure � for
the case with P � mK ����� We apply an a�ne change of variables� to move again
to an integral over �� Applying the 	rst case to these two subtriangles� we again can
show the error is of order three� Thus� the error contributed by the integral over �K �
which contains P � is always of order three� no matter whether P is a vertex or a
midpoint of a side of �K�
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Fig� �� Splitting triangles

In the next lemma� we examine the errors from integrating over those triangles
�K which do not contain P � Then� we can combine these two lemmas together and
give the global error for the single layer integration�

Lemma ���� Let P be a node point� and consider all �K for which P 
� �K �
Then X

K

Z
�

f�mK �s� t��

j P �mK�s� t� j j DsmK�s� t� �DtmK �s� t� j d��

X
K

Z
�

fN � emK�s� t��

j P � emK�s� t� j j Ds emK�s� t� �Dt emK �s� t� j d� � O�b��K�����

where b�K is the diameter of �K�
Proof� Since P 
� �K� we can treat the function �	 j P �mK�s� t� j as a smooth

function� All results from Lemma ��� and Theorem ������������ 
�
� can be applied
with slight changes� Let ���� be decomposed as E� � � � �� E� where

E� �
X
K

Z
�

f�mK �s� t�� 
j DsmK �DtmK j � j Ds emK �Dt emK j

j P �mK �s� t� j d�

E� �
X
K

Z
�


f�mK �s� t��� fN �mK �s� t��
 j Ds emK �Dt emK j
j P �mK�s� t� j d�

�
X
K

Z
�


f�mK �s� t��� fN �mK�s� t��
 j DsmK �DtmK j
j P �mK�s� t� j d�

E� �
X
K

Z
�


f�mK �s� t��� fN �mK �s� t��
 j DsmK �DtmK j
j P �mK�s� t� j d�
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E� �
X
K

Z
�

�
fN �mK �s� t��

j P �mK�s� t� j �
fN �mK�s� t��

j P � emK �s� t� j
�
j Ds emK �Dt emK j ds dt

�
X
K

Z
�

�
fN �mK �s� t��

j P �mK�s� t� j �
fN �mK�s� t��

j P � emK�s� t� j
�
j DsmK �DtmK j ds dt

E� �
X
K

Z
�

�
fN �mK �s� t��

j P �mK�s� t� j �
fN �mK�s� t��

j P � emK �s� t� j
�
j DsmK �DtmK j d�

The integrand of E� is O�b��K	d�K� � O�b��K	d�K�� Using the calculation we had
in Theorem ���� we get that E� is of order three�

For E��Z
�

f�mK �s� t�� � fN �mK �s� t��

j P �mK �s� t� j f j DsmK �DtmK j � j Ds emK �Dt emK j g d�

�
X
K

O�b��� �O�b��� � Z
�

�

j P �mK �s� t� j d� � O�b�	� � �

dK

for every K where P 
� �K � Adding errors from each triangle� we have that E� is
O�b���� as we discussed in computing E��

For E�� we have the error fromZ
�

f�mK �s� t�� � fN �mK �s� t��

j P �mK �s� t� j j DsmK �DtmK j d�

is O�b��	dK� for every triangle� Again� following the argument in Theorem ���� E�

is O�b����
Analyzing E�� we have

�

j P �mK�s� t� j �
�

j P � emK �s� t� j � O�
b��K
d�K

� �����

andZ
�

�
�

j P �mK�s� t� j �
�

j P � emK �s� t� j
�
fN �mK�s� t�� j DsmK �DtmK j d��

Z
�

�
�

j P �mK �s� t� j �
�

j P � emK�s� t� j
�
fN �mK �s� t�� j Ds emK �Dt emK j�dsdt

� O�
b�	K
d�K

�

for each �K� After adding up errors� E� � O�b�� ln b���
For E�� each triangle give us an error of O�b��K	d�K�� When adding errors to�

gether� cancellation happens at every symmetric pair of triangles and errors become
O�b��K	d�K�� Thus� as we discussed in computing E�� E� is O�b���� After going
through E��E�� the global error for the single layer integral� in which P �mK�s� t�

is nonzero for every K� is O�b���� This result is uniform as P ranges over the node
points of the triangulation�
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Combining the above lemma� we get the following result� which gives the total
error for evaluating the single layer integral at any node point� We use this later to
assess the e�ect on �N of using an approximation to the single layer�

Theorem ���� Let S be a piecewise smooth surface� and let P be a node point
on S� Assume the unknown function f � C��Si� � C�S�� i � �� � � � � J � ThenZ
S

f�Q�

j P �Q jdSQ �
NX

K��

Z
�

f� emK �s� t��

j P � emK �s� t� j j Ds emK �s� t��Dt emK �s� t� j d� � O�b��� �
Proof� Combine Lemma ��� and Lemma ����

���� Using the approximate surface� When using the approximate surfaceeSN � the linear system for ��� for the Dirichlet problem becomes

��e�N �vi� � 
�� � ��vi�
 e�N �vi��

NX
K��

�X
j��

e�N �vj�K�

Z
�

lj�K�s� t�
�Ds emK�s� t��Dt emK�s� t�� � �vi � emK�s� t��

j vi � emK�s� t� j� d�

� f�vi� � i � �� � � � �Nv �����

For a smooth surface S� we would expect to use �N �P � � ��P � � ��� thus sim�
plifying the above system� However� for the piecewise smooth surfaces considered in
Section �� we need to consider an approximation to ��P �� and from the numerical
examples in Section �� it is also useful to consider approximations of ��P � for S a
smooth surface�

Using the identity

��P � �

Z
S

�

��Q

�
�

j P �Q j
�
dSQ � P � S����

we de	ne

�N �P � �
NX

K��

�X
j��

Z
�

lj�K�s� t�
�Ds emK �Dt emK � � �P � emK�s� t��

j P � emK �s� t� j� d�����

Later� in Theorem ��� of Section �� we show that

max
��i�Nv

j ��vi� ��N �vi� j � O�b��N �����

Empirically for a smooth surface S� in Section �� it appears the approximation error
is actually O�b��N �� although we have not been able to prove this�

The linear system ���� is denoted here by

��� � eKN �e�N � gN����

with

e�N�i � e�N �vi� � gN�i � fN �vi� � i � �� � � � � Nv �

When solving the integral equation ��� for the exterior Neumann problem� we also
approximate the right�hand side� now a single layer integral� using ����� In the above
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frame work� and consistent with earlier notation� we write

egN�i �
NX

K��

�X
j��

Z
�

f� emK �s� t�� j Ds emK �Dt emK j
j vi � emK �s� t� j d�����

for i � ��� � � � Nv�
For convergence when using the approximate surface eSN � we have the following

theorem� In Section �� we give experimental results which suggest that the below
convergence results can be improved�

Theorem ���� Consider the integral equations ��� and ��� with solution �� Let
S be a smooth surface in R�� and assume the unknown function � � C��S�� Then

max
��i�Nv

j ��vi� � e�N �vi� j � O�b��N �����

Proof� We use a perturbation analysis� based on regarding the system ���� as a
perturbation of the corresponding system

���I �KN ��N � gN����

for the projection method analyzed in Theorem ��� which used the exact surface S�
From earlier in ����� ����KN ��� is uniformly bounded for all su�ciently large N �

The present analysis uses the result

kKN � eKNk � O�b��N �����

with the matrix row norm� The proof of this is essentially the same as that for �����
and thus we defer the proof of ���� to Theorem ���� Using ����� and the invertibility
of �� �KN with the uniform boundness of ��� �KN ��� � for all su�ciently large

N � we have by standard arguments that the same is true for the inverse of ��� eKN �

k��� � eKN ���k � c � � � N 
 N�����

for some N� and some c � ��
By straightforward manipulation of ���� and ����� we have

�N � e�N � ��� � eKN ���
h eKN �KN

i
gN � ��� � eKN ��� 
gN � egN 
����

The 	rst term on the right side is O�b��N �� from ����� The second term is either zero

or O�b��N �� from Theorem ���� When consider with Theorem ���� this shows the result
�����

�� Numerical Examples� Smooth Surface Case� The collocation method
of x�� with the use of the quadratic isoparametric interpolation of the surface S� was
implemented with a package of programs which work for a wide variety of smooth
and piecewise smooth surfaces� This package was 	rst described in 
�� �
� and it has
since been updated and improved in several ways� 
Eventually� the package will be
made available publicly� with an accompanying user�s manual�


There are two crucial aspects of the practical implementation that were not dis�
cussed in x�� the calculation of the collocation integrals and the solution of the large
linear systems that often arise from the discretization� The iterative solution of such
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linear systems by two�grid methods is discussed in Atkinson
�
� and thus we restrict
our attention here to the numerical integration of the collocation integrals�

For the numerical integration� we have currently settled on the following schema�
after much experimentation with other approaches� We 	nd that the numerical inte�
gration of the collocation integrals is by far the most time�consuming part in solving
the boundary integral equation� One must have integrals that are su�ciently accu�
rate� to match the accuracy of the �pure� collocation solution �N � But it is very
wasteful of computing time to calculate these integrals with more accuracy than is
needed�

The collocation integrals in the matrix of coe�cients of ���� are given byZ
�

��vi� emk�s� t��lj�s� t� j Ds emK �Dt emk j d�����

In this� i � �� � � � � Nv� j � �� � � � � �� and K � �� � � � � N � and ��P�Q� denotes
the kernel function for the double layer integral operator� For the exterior Neumann
problem� we also need to evaluate the corresponding single layer integralsZ

�

f� emK �s� t��

j vi � emK�s� t� j j Ds emK �Dt emK j d�����

Recall from x� that emK � � �� e�K is a one�to�one and onto parametrization of the
triangle approximating �K� We consider two cases in evaluating ����� depending on
whether vi is inside or outside of �K �

If vi � �K � then ��vi� Q� is singular� We use a change of variable based on

�
� This was introduced in 
�� p� ��
� where we noted that it removed all singular
behavior in both the double layer integrals ���� and the corresponding single layer
integrals� Subsequently� we discovered that the change of variables is equivalent to
that introduced in 
��
� Others who have since made use of this transformation
include 
��
 and 
��
� The latter paper carries out a detailed analysis of the method
and an extension of the transformation to other singular integration problems arising
in solving boundary integral equations�

Assuming the collocation node vi � mK ��� ��� introduce the change of variables

s � �� � y�x t � yx � � x� y � �

With this� the new integrands in ���� and ���� will be well�behaved� For �K a
surface with Cm di�erentiability� m 
 �� the transformed integrand for ���� will
be Cm�� times di�erentiable� and if the density f�Q� is m�times di�erentiable on
�K � the transformed integrand for ���� will be Cm�� times di�erentiable� We then
evaluate the transformed integral using a product Gaussian quadrature formula� with
Ng nodes in both the x and y coordinates �thus using N�

g integration nodes�� If
vi � mK ��� �� or mK ��� ��� then we use an a�ne transformations to convert back to
the case just discussed� If vi � mK �qj� with j � �� �� or �� then we divide � into
two parts and treat the integral over each part as described above� As an example�
suppose vi � mK ��� ���� See Figure � for the appropriate subdivision of �� for which
we use an a�ne transformation to map each subtriangle onto � in such a way that
the singular point occurs at ������

The above change of variables is used to remove the singularity in the integration
over each triangle� For cases of N � ��� faces� we have found Ng � �� to be very
su�cient to preserve the accuracy of the collocation solution� and smaller values of



PIECEWISE POLYNOMIAL COLLOCATION FOR BIE ��

Ng are su�cient for smaller values of N � Note that the number of integrals ����
with vi � �K � for some i and K� is of order Nv� whereas the total number of
integrals to be computed is of order N�

v � Thus when considering operation counts�
the singular integrals are the less important of the integrals ���� to be considered�

For vi 	� �K� the integrand in ���� is analytic� but it is increasingly peaked as
the distance between vi and �K decreases� A method to evaluate integrals such
as ���� and ���� over � is based on ����� the quadrature rule T����� of 
��
� Let an
integer parameter Nd 
 � be given� If vi 	� �K and

dist�vi��K� � �N �

where �N is the mesh size of f�K g as de	ned in ���� then integrate ���� using ����
with Nd levels of subdivision of � 
thus dividing � into �Nd subtriangles� with
���� applied to the integral over each of the corresponding subintegrals
� If vi 	� �K

and

�N � dist�vi��K� � ��N �

then integrate ���� using ���� with maxfNd � �� �g levels of subdivision of �� If
vi 	� �K and

��N � dist�vi��K� � ��N �

then integrate ���� using ���� with maxfNd��� �g levels of subdivision of �� Continue
with this in the obvious way�

We have found that as N is increased to �N � then raising Nd to Nd � � is
su�cient to integrate ���� and ���� with the needed accuracy� For all of our examples�
for both smooth and piecewise smooth surfaces� the largest value of Nd that we have
needed to use has been Nd � �� We have used larger values of Nd in our experiments�
to check the accuracy when using the lower values of Nd� When vi 	� �K � other
methods have been tried for evaluating ���� and ����� for example� a method with
automatic error control was described in 
�
 and 
�
� But the method described here
has proven to be the most e�cient� Nonetheless� the integrations of ���� and ���� are
still the most expensive parts of our computation� far exceeding the cost of solving
the linear system ���� for the discretized boundary integral equation�

���� The Surfaces� Two smooth surfaces were used in our experiments� Surface
#� �denoted by S#�� was the ellipsoid�x

a

	�
�
�y
b

	�
�
�z
c

	�
� �

In Tables ��� given below for this ellipsoid� �a� b� c� � ��� ���� ���
The ellipsoid is convex and symmetric� For that reason� we also devised and used

a surface which is not symmetric and which is slightly non�convex� Surface #� �S#��
is de	ned by

�x� y� z� � ���� �� ���A��B��C��� �� � �� � �� � �

with

���� �� �� � �� 
�� � ���� � ��� � ���� � ��� � ����
	�
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Fig� �� Cross sections of �squash� surface

and A� B� C � �� � 
 �� The case we use here is � � �� and �A�B�C� � ��� �� ���
Figure � gives the cross�sections of S#� when intersecting S with vertical planes
containing the z�axis� intersecting at angles of � � �� �	�� �	� with respect to the
positive x�axis� Experiments were done with other choices of � and �A�B�C��
corresponding to surfaces with a more pronounced lack of symmetry and convexity�
But in order to obtain error results with some regularity in asymptotic behavior� we
chose the parameters given above� giving the surface illustrated in Figure ��

���� The Solid Angle� At all points P � S� the solid angle ��P � � ��� In
Table �� we give the approximate values of the solid angle for S#� as computed using
�N �P � in ����� The points P at which these are given are

v� � ��� �� ��� v� � ��� �� ��� v� � ��� ���� ��

v	 � �
p
��
p
���� ��� v
 � �

p
��
p
������ ��� v� � ���

p
������

p
����

The subscripts refer to the indexing of node points used in our triangulation package�
The empirical rate of convergence is approximately O�b��N �� The integration param�
eters used were Ng � �� and Nd � �� The columns E�� E�� E�� and E� denote
the errors for N � �� ��� ���� ��� respectively� 
Note that for a given N � the number
of nodes on S is Nv � ��N � ���
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Table � Solid angle approximations on S#� at selected vi
i E� E� E� E�	E� E�	E� E�	E�
� ����E�� ����E�� ����E�� ���� ���� ����
� ����E�� ����E�� ����E�� ���� ���� ����
� ����E�� ����E�� ����E�� ���� ���� ����
� ����E�� ����E�� ����E�� ���� ���� ����
� ����E�� ����E�� ����E�� ���� ���� ����
� ����E�� ����E�� ����E�� ���� ���� ����

Similar results for the approximate solid angle are true for S#��

���� Solution of the exterior Neumann problem� The problem ��� was
solved with the normal derivative f so chosen that the true solution is known� The
two cases used here are

u��P � �
�

r
� u��P � �

�

r
ex�r

�

cos�z	r��

with P � �x� y� z� and r �j P j� In this case� � � u� and we use u and uN in our
discussion� Tables � and � contain the maximum error at the node points for solving
boundary integral equation ��� for S#� and S#�� respectively� The integration
parameter Ng � ��� and for Nd� we used �� �� �� � for the cases N � �� ��� ����
and ��� respectively� for both S#� and S#��

The results in Table � for S#� are consistent with an asymptotic rate for
the error of O�b��N � or O�b��N log b�N �� in agreement with the theoretical result in
Theorem ��� for the collocation method with the exact surface� In the case of S#�
in Table �� the asymptotic pattern for the maximum error appears to be O�b��N �� and

to check in more detail whether the error is truly O�b��N �� Table � gives the errors
at a representative sampling of the �� nodes used in the coarsest triangulation of S
�for N � ��� along with the ratios by which these errors decrease� The columns E��
E�� E�� and E� denote the errors for the parameter N � �� ��� ���� and ����
respectively� When looking at the individual errors� there is a pattern of an O�b��N �
rate of convergence at a large number of the points� and we conjecture that with larger
values of N � an asymptotic error of O�b��N � would emerge for the maximum error�

Table � Maximum errors on ellipsoid
ku� � u�Nk� Ratio ku� � u�Nk� Ratio

� ����E�� ����E��
�� ����E�� ���� ����E�� ���
��� ����E�� ���� ����E�� ����
��� ����E�� ���� ����E�� ����

Table � Maximum errors on surface S#�
ku� � u�Nk� Ratio ku� � u�Nk� Ratio

� ����E�� ����E��
�� ����E�� ���� ����E�� ����
��� ����E�� ��� ����E�� ���
��� ����E�� ��� ����E�� ���

Since these are smooth surfaces� why not use the true value of ��vi� � �� � rather
than incorporating the approximation ���� into the discretization of ���$ Table � gives
the values of the maximum error at the node points fvig with u � u� on S#��

with ��vi� � �� at all node points� Note that now the error is O�b��N �� which is

worse than the convergence rate of O�b��N log b�N � predicted by Theorem ��� for the
solution uN �
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The use of the approximation ���� is forcing a favorable cancellation to occur
in forming the discretized linear system ����� Another way of looking at what is
happening is the following� The matrix of coe�cients ���� is forced to have �� as
an eigenvalue� with the eigenvector being the vector with all components equal to ��
This makes the discretized system exactly like the original integral equation ���� in
which the function u�P � � � is an eigenfunction of the left side of ���� with the
eigenvalue being ���

Table � Errors at representative vi on S#�� for u � u�
N E� E� E� E�	E� E�	E� E�	E�
� �����E�� �����E�� �����E�� ��� ���� ����
� �����E�� �����E�� �����E�� ���� ���� ����
� �����E�� �����E�� �����E�� ���� ���� ����
� �����E�� �����E�� ����E�� ���� ���� ����
� �����E�� �����E�� �����E�� ���� ���� ����
�� �����E�� �����E�� �����E�� ��� ���� ����
�� �����E�� �����E�� ����E�� ���� ���� �����
�� �����E�� �����E�� ����E�� ���� ���� ����
�� �����E�� �����E�� �����E�� ���� ���� ����

It is clearly preferable to use the approximate solid angle rather than the exact
one� The cost of using the approximation ���� is minimal� since all quantities used
have been calculated in setting up the linear system �����
Table � Errors for u � u� on the ellipsoid S#� with use of the exact solid angle

� � ��
N ku� � u�Nk� Ratio
� ����E��

�� ����E�� ����
��� ����E�� ����
��� ����E�� ����

���� The interior Dirichlet problem� We solve the integral equation ���� for
the interior Dirichlet problem� with the same procedures as described above for the
exterior Neumann problem� To complete the solution process� we must then calculate
numerically the integral ���� Letting %�N denote the approximate density function
thus obtained� we must evaluate

uN �A� �

Z
S

%�N �Q�
�

��Q

�
�

j A� Q j
�
dSQ� A � D����

From 
�
� the rate of convergence will be O�b��N � when the quadrature is based
on standard symmetric numerical integration rules over the unit simplex with a suf�
	ciently high degree of precision� e�g� the rules ���� and �����

Expand the integral in ���� as

nX
k��

Z
�K

%�N �Q�
�

��Q

�
�

j A �Q j
�
dSQ����

The triangulation f�Kg being used here need not be the same as the one used in
obtaining %�N � but the two triangulations should be compatible in sense that one is
a re	nement of the other� For those triangles �K which are close to the 	eld point
A� the integration should be done with more accuracy than for those triangles which
are relatively far from the 	eld point�
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It has been our experience that the density function %�N can be relatively inac�
curate� and quite acceptable accuracy in the solution uN �A� can still be obtained�
The accuracy in the solution uN is dependent much more on the accuracy of the
numerical integration of ���� than on having high accuracy in %�N � This should not
be especially surprising� as it is well known that integration is a �smoothing� opera�
tion� and the e�ect of errors in the integrand� including %�N � are reduced� Extended
examples to illustrate this are given in the technical report 
�
� and we omit them here
for reasons of space�

�� Collocation on Piecewise Smooth Boundaries� As in x�� we 	rst ana�
lyze the collocation method ��� � PNK��N � PNSf for ��� by assuming the exact
representation of the surface is used in all integrations� and following that� we ana�
lyze the e�ect of using a quadratic interpolatory representation of the surface� For
polyhedral boundaries� there is no need to approximate the boundary� and these are
the cases analyzed in 
��
 and 
��
�

As in 
�
� we use a stability analysis based on Wendland
��
� and then as in x��
we analyze the discretization error for the iterated collocation solution�

 �N �
�

��
�g �K�N �

In 
��
� a piecewise constant collocation method is de	ned and analyzed� The proofs
given there generalize easily to our collocation method based on quadratic isopara�
metric interpolation� In Wendland�s paper� he makes several assumptions about the
piecewise smooth surface S� in addition to those described in x�� Assumption V� of
his paper states that at all points of S� either the inner or the outer tangent cone
must be convex� and assumption V� states that all edges of S must be piecewise
continuous and must not contain any cusps� Within this setting� it is straightforward
to prove the following�

Theorem ���� Let S satisfy the assumptions given above and earlier in x�� and
let S also satisfy the assumptions V� and V	 of 
���� as discussed above preceding
the theorem� Moreover� assume

�

�
sup
P�S

j �� ���P � j� ������

Let PN denote the interpolatory projection of ����� based on quadratic isoparametric
interpolation over the triangulation f�K j K � �� � � � � Ng� Then for all su
ciently
large N � say N 
 N�� and for some c ���

k��� � PNK���k � c� N 
 N�����

Moreover� this implies that

k��� �KPN ���k � c� N 
 N�����

For the error�

k�� �Nk � O�b��N �����

Proof� We refer to the derivation in 
��
� Essentially� the problem of analyzing
��� � PNK��N � PNg is divided into two parts� Begin by decomposing the surface
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S into two subdomains based on distance to an edge or vertex of S� Let T denote
the union of all edges and vertices of the surface S� For a given 
 � �� let

S� � fP � S j dist�P� T � � 
g

and let S� be the closure of S � S�� Consider spaces C�Si�� i � �� �� and de	ne
integral operators Kij � C�Si�� C�Sj� by

�Kij���P � �

Z
Sj

��Q�
�

��Q

�
�

j P �Q j
�
dSQ � 
��� ��P �
��P �� P � Si� � � C�Sj�

The 	nal term 
�� � ��P �
��P � needs to be included only when i � j � �� For
�i� j� 
� ��� ��� the operators Kij are compact�

De	ne X � C�Si��C�Sj�� Then the original boundary integral equation ��� for
the exterior Neumann problem� ����K�� � Sf � and the collocation equation for its
solution� ��� � PNK��N � PNSf � can be reformulated� respectively� as�

�� � K�� K��

K�� �� � K��

� �
��
��

�
�

�
g�
g�

�
�

�� � P�NK�� P�NK��

P�NK�� �� � P�NK��

��
��N
��N

�
�

�
�PNg��
�PNg��

�
����

We assume that the interpolation operator PN is so de	ned that PN� j Si depends
on � at only the node points within Si� Then we can de	ne Pi � C�Si� � C�Si�
by

PiN� � PN� j Si � � C�Si� i � �� �����

Using the methods of 
��
� it is straightforward to show that if 
 is chosen

su�ciently small� then ���K�� � C�S�� �
���
onto C�S��� and moreover� for all su�ciently

large N �

k��� � P�NK���
��k � c ������

Using this� operate on ���� and ���� to obtain�
I ��� � K�����K��

�

��K�� I � �

��K��

� �
��
��

�
�

�
��� � K�����g�

�

��g�

�
�

I ��� � P�NK�����P�NK��

�

��
P�NK�� I � �

��
P�NK��

��
��N
��N

�

�

�
��� � P�NK���

���P�Ng��
�

��
�P�Ng��

�
We write these equations in the simpler forms

�I �H�%� � r � �I �HN �%�N � rN����

respectively� with %� � 
��� ��

T � %�N � 
��N � ��N 
T �

The operator H � X � X is compact� and the family fHNg is a pointwise
convergent and collectively compact family� converging pointwise to H� With the
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known invertibility of ���K on C�S�� we can obtain the invertibility of I�H� Using
the theory of collectively compact operator approximations� we have the existence and
uniform boundedness of �I�HN ��� for all su�ciently large N � and this leads directly
to the result ���� asserted in the theorem� The result ���� follows from the identity
���� given earlier�

For convergence of the collocation solutions f�Ng� the standard result

k�� �Nk� � �

��
k��� � PNK���kk� �PN�k�����

implies k�� �Nk� � O�b��N � from the bound ���� for interpolation error�
The condition ���� and the other assumptions of 
��
 on the solid angle are quite

restrictive� and it is clear from the numerical examples that they are not necessary
in practice� Other somewhat less restrictive assumptions on S are given in 
��
�

��
� 
��
�
��
� but for our proof of stability� we still require ����� Our results on rates
of convergence assume only the stability results ���� and ����� not on how they are
obtained� Other tools for proving stability are given in 
��
 and 
��
� and it may be
possible to adapt them to our use of piecewise polynomial isoparametric interpolation�
Again� they consider only polyhedral surfaces� and thus do not need to approximate
the surface�

We cannot show superconvergence of  �N at the node points �which was shown
in Theorem ��� for S a smooth surface�� For S only piecewise smooth� K is no
longer a smoothing operator� and that appears to prevent superconvergence�

���� Using the approximate surface� In practice� we solve the linear system
����� which uses the approximate surface eSN � We also approximate the solid angle
��P � by the quantity �N �P � de	ned in �����

Theorem ���� Let S be a piecewise smooth surface� and let P be a node point
on S� Then

��P �� �N �P � � O�b��N � �

Proof� We 	rst compute the error contributed by �K which contains P �
Without loss of generality� assume P � mK ��� ��� Let

P � �p�� p�� p�� � mK��� �� � emK��� �� �

We break error over �K into two parts�

E� �

Z
�

�
�DsmK �DtmK� � P �mK�s� t�

j P �mK �s� t� j� �

�Ds emK �Dt emK � � P � emK �s� t�

j P �mK �s� t� j�
�
ds dt����

and

E� �

Z
�

�
�Ds emK �Dt emK � � P � emK �s� t�

j P �mK �s� t� j� �

�Ds emK �Dt emK � � P � emK �s� t�

j P � emK�s� t� j�
�
d� �����



�� K� ATKINSON AND D� CHIEN

We now manipulate the 	rst part of the integrand of �����

�DsmK �s� t��DtmK�s� t�� � P �mK�s� t�

j P �mK�s� t� j�

�
�x�sx

�
t � x�sx

�
t � x

�
sx

�
t � x�sx

�
t � x

�
sx

�
t � x�sx

�
t � � �p� � x�� p� � x�� p� � x��


�p� � x��� � �p� � x��� � �p� � x���
���
����

Using the Taylor error formula for the xi about �s� t� � ��� ��� the numerator of
equation ���� becomes

�x�sx
�

t � x�sx
�

t � x
�

sx
�

t � x�sx
�

t � x
�

sx
�

t � x�sx
�

t � � �p� � x�� p� � x�� p� � x��

� �x�tx
�

s � x�tx
�

s��s
�x�ss � �stx�st � t�x�tt� � �x�tx

�

s � x�tx
�

s��s
�x�ss � �stx�st � t�x�tt�

� �x�tx
�

s � x�tx
�

s��s
�x�ss � �stx�st � t�x�tt� � O�b��K� �

Computing the corresponding part of the second term of ���� with the same
formula as we had above�

�Ds emK �Dt emK� � �P � emK�s� t��

� �x�tx
�

s � x�tx
�

s��s
�x�ss � �stx�st � t�x�tt� � �x�tx

�

s � x�tx
�

s��s
�x�ss � �stx�st � t�x�tt�

� �x�tx
�

s � x�tx
�

s��s
�x�ss � �stx�st � t�x�tt� � O�b��K�����

Thus�

�DsmK �DtmK� � �P �mK�s� t�� � �Ds emK �Dt emK� � �P � emK�s� t�� � O�b��K��

Expanding each xi about ��� ��� the denominator of ���� is


�p� � x��� � �p� � x��� � �p� � x���
���� � O�j b�K j���

Then�Z
�

�DsmK �DtmK� � �P �mK�s� t�� � �Ds emK �Dt emK� � �P � emK�s� t��

j P �mK �s� t� j� d�

� O�b��K�����

Note there are at most six triangles containing the node point P � and the total error
contributed from the �K �s which contain P is O�b��K ��

To analyze E�� we need to know the error from the following����� �

j P �mK �s� t� j� �
�

j P � emK�s� t� j�
����

�
���� �

j P �mK�s� t� j �
�

j P � emK �s� t� j
���� � ���� �

j P �mK�s� t� j�

�
�

�j P �mK�s� t� j��j P � emK �s� t� j� �
�

j P � emK�s� t� j�
����

� O�b�K� �O�b���K � � O�b���K �
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Then� from the above result and ����� we have the following error analysis for E������Z
�

�Ds emK �Dt emK � � �P � emK �s� t��

�
�

j P �mK�s� t� j�

� �

j P � emK�s� t� j�
�
d�

���� � O�b��K� �O�b���K � � O�b��K �����

Combining ���� and ����� we complete the proof of the 	rst step� for �K containing
P �

Consider errors contributed by all �K for which P 
� �K � Since P 
� �K �
again� we can treat the function �	 j P � mK �s� t� j� as a smooth function� This
proof will have two parts� as with Theorem ���� and we use results from the latter�
Let dK � d� and r be the same as in Theorem ����

Decompose the second part of proof as E� and E�� the same as above in ����
and ����� respectively� In the previous part� we assumed that P � mK ��� ��� and we
now assume

P 
� mK�s� t�� � �s� t� � � �

Expand each xi about �s� t� � ��� �� and compute

�DsmK �DtmK� � �P �mK�s� t�� � �Ds emK �Dt emK� � �P � emK�s� t��

� E��s� t� bv� � bv�� bv� � bv�� � E��s� t� bv� � bv�� bv� � bv�� � O�b��K�

E� is a homogeneous polynomial of degree � in s and t� and its coe�cients are
O�b��K � dK�� Integrating E� over � yields zero� E� is also a polynomial in s and

t� Its coe�cients are O�b��K�� and E� has the �odd function� property�

E��s� t���bv� � bv�����bv� � bv��� � �E��s� t� bv� � bv�� bv� � bv�� �
Thus� cancellation occurs�

For examining E�� we need to expand the function j P � mK�s� t� j�� about
�s� t� � ��� ��� Then we obtain

�DsmK �DtmK� � �P �mK �s� t��� �Ds emK �Dt emK � � �P � emK �s� t��

j P �mK �s� t� j�

�
E� � E� �O�b��K �


�p� � x���� ���� � �p� � x���� ���� � �p� � x���� ����
���

� �E� � E� �O�b��K ��e �O�
b��K
d�K

�����

where e is a polynomial in s and t� and its coe�cients are O�b�K	d�K�� Integrating

���� over �� the error contributed by each �K is O�b��K	d�K� � O�b��K	d�K�� Then�

the global error E� can be shown� using earlier methods� to be O�b����
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For computing E�� we 	rst calculate

j �

j P �mK�s� t� j� �
�

j P � emK�s� t� j� j

� j �

j P �mK�s� t� j �
�

j P � emK �s� t� j j � j
�

j P �mK�s� t� j�

�
�

�j P �mK�s� t� j�� j P � emK �s� t� j� �
�

j P � emK�s� t� j� j����

Using ����� ���� is O�b��K	d�K� � O��	d�K� � O�b��K	d�K�� Therefore� the integrand of
E� is�����Ds emK �Dt emK� � �P � emK�s� t��

�
�

j P �mK�s� t� j� �
�

j P � emK�s� t� j�
�����

� O�b��K � �O�dK� �O�
b��K
d�K

� � O�
b��K
d�K

�

Thus� the error contributed by each �K is O�b��K	d�K�� and E� is of order two�
This proves the theorem� An almost identical proof also shows the result ���� used
in the proof Theorem ���� and we omit the details�

The above theorem shows the di�erence between the value of solid angle and
the approximate value of the solid angle� This result is not as good as desired� For
smooth surfaces� the empirical rate seems to be O�b��N �� from the example of Table �
and other similar examples� But the empirical results for piecewise smooth surfaces�
given in the following section� do not clearly indicate a convergence rate�

Theorem ���� Let S be a piecewise smooth surface� satisfying the assumptions
of Section �� the hypotheses of 
��� as descried earlier� and the solid angle assumption
����� Let � be a solution of ��� or ���� with � � C�S� �C��Sj�� j � ��� � � � J � Lete�N be the solution of the system �	�� which uses the approximation eSN for S�
Then

max
��i�Nv

j ��vi� � e�N �vi� j � O�b��N �

Proof� This is proven by combining the techniques used in the proof of Theorem
���� together with the results of Theorem ��� for the collocation method for ��� or ���
when the original surface S is used� We omit the details

�� Numerical Examples� Piecewise�Smooth Surface Case� The colloca�
tion integrals in the linear system ���� were evaluated with the same type of numerical
integration as was used when S was a smooth surface� The two�grid iteration method
for solving the linear system required a modi	cation from that used for the smooth
surface case� and this is explored in 
�
� Below we give examples for several piecewise
smooth surfaces� to empirically study the rate of convergence of the projection me�
thod and to illustrate some of the results of x�� Since we are solving ���� we replace
� with u�

Note that in our examples� the true solutions u�P � are all smooth functions
when P is o� the boundary� and they are piecewise�smooth on the boundary� In
contrast� the presence of a piecewise smooth boundary usually leads to solutions that
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are ill�behaved in a neighborhood of all edges and corners of the surface S� To deal
with such solutions� a graded triangular mesh is needed� A theory describing the form
of grading needed for Galerkin�s method has been developed recently� in 
��
� and for
collocation methods� a theory is described in 
��
� These results are all limited to
polyhedral boundaries�

���� The surfaces� We describe three surfaces� two of which are polyhedral�
The 	rst surface �S#�� is an elliptical paraboloid with a cap��x

a

	�
�
�y
b

	�
� z � � z � c

�x
a

	�
�
�y
b

	�
� c� z � c

The second surface �S#�� is the tetrahedron

f�x� y� z� j x
a
�
y

b
�
z

c
� �� x� y� z 
 �g

The third surface �S#�� is an �L�block�� described as follows� De	ne

L� � 
�� �
� 
�� �
� 
�� �
� 
�� �
� R�

D� � 
�� �
� L� � R�

D � f�ax� by� cz� j �x� y� z� � D�g

and let S be the boundary of D� With all three surfaces� the constants a� b� and
c are positive�

Surface #� was chosen to illustrate the use of a curved surface� so that the use of
the interpolatory approximate surface eS would be non�trivial� Surface #� encloses
a convex region� and all boundary points satisfy the hypotheses of 
��
 although the
angle assumption ���� is not satis	ed� Surface #� is also polyhedral� but now it
encloses a nonconvex region� Moreover� some of the angles on the surface do not
satisfy the assumption V� of 
��
� 
V� states that at each point of the boundary�
either the interior or the exterior tangent cone must be convex�
 For example� the
tangent cones at �x� y� z� � ��� �� �� and ������� do not satisfy V�� Working with
S#� allows us to test whether or not the assumption V� is necessary empirically�
However� this surface does satisfy the assumptions of 
��
� which extends the earlier
results of 
��
 to a slightly larger class of surfaces� albeit in a modi	ed function space�

���� The solid angle� We again use the approximation ���� to approximate the
interior solid angle ��v� at points v � S� thus forcing all rows of the coe�cient
matrix for the linear system ���� to equal ��� Results for an elliptical paraboloid
�S#�� are given in Table � at the following representative nodes�

v� � ��� �� ��� v� � ��� �� ��� v� � ��� �� ��

v	 � ��� �� ����� v
 � �
p
��
p
�� ��� v�� � ��� �� ��

The parameters used for the surface were �a� b� c� � ��� �� ��� and the integration
parameters were Ng � �� and Nd � �� �� �� � for N � �� ��� ���� ���� respectively�

In Table �� some of the entries have a rapid decrease in size as N increases� and
then the error stops decreasing and remains around ���	 to ���
� It seems likely
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that the latter is due to the limited accuracy in the numerical integration method�
although we have not tested this� In general� there appears to be no pattern to the
rate at which the error decreases� The case of ��v
� is of interest� as the error in this
case is much larger than for the other cases� again for unknown reasons� According
to Theorem ���� the errors should converge with a rate of at least O�b��N �� but only
for the node v
 does this seem to be the case�

Table � Solid angle approximations on an elliptical paraboloid at selected vi
i ��vi� E� E� E� E�
� �� ����E�� �����E�� ����E�� �����E��
� �	� ����E�� ����E�� ����E�� ����E��
� �� ����E�� �����E�� ����E�� �����E��
� �� ����E�� ����E�� �����E�� �����E��
� �	� ����E�� ����E�� ����E�� ����E��

�� �� ����E�� �����E�� ����E�� ����E��
The results for a polyhedral surface were much better� Table � contains results

for the L�block �S#�� at the following representative nodes�

v� � ��� �� ��� v	 � ��� �� ��� v� � ��� �� ��

v�	 � ���� �� ����� v�� � ���� �� ����� v�� � ���� �� ��
����

There is no approximation of the surface in this case� and thus all errors are due to
the numerical integration being used� The resulting errors are very small�

The parameters for the L�block are �a� b� c� � ��� �� ��� and for the integration
parameters� we used Nd � �� �� � for N � ��� ���� ���� respectively� Note that in
this case� there are no singular integrals� as the double layer kernel function K�P�Q�
is identically zero when P and Q belong to the same planar surface� The columns
E�� E�� and E� denote the errors at the given vi� for N � ��� ���� ���� respectively�

Table 	 Solid angle approximations on an L�block at selected vi
i ��vi� E� E� E�
� �	� �����E�� �����E�� �����E��
� � ����E�� ����E�� ����E��
� ��	� ����E�� ����E�� ����E��
�� �� ����E�� ����E�� �����E��
�� �� �����E�� ����E�� �����E��
�� �� �����E�� ����E�� �����E��

���� Solution of the exterior Neumann problem� We begin with the solu�
tion of ��� for the elliptical paraboloid �S#��� The problem ��� was solved with the
normal derivative f chosen from the true solution u� The two cases used were

u��x� y� z� �
�

r
� u��x� y� z� �

�

r
exp�x	r�� cos��z � �

�
c�	r��

with r �j �x� y� z�� ��� �� �
�
c� j�

Table � contains the maximum errors at the node points� for �a� b� c� � ��� �� ���
The integration parameters used were Ng � �� and Nd � �� �� �� � for N � ��
��� ���� ���� respectively� To better understand the behavior of the error� Table �
contains the errors for u�N at the following representative vertices vi �

v� � ��� �� ��� v� � �
p
�� �� ��� v� � ��� �� ��

v	 � �
p
�� �� ���� v
 � ��� �� ��� v�� � �

p
�� �� ��

����
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The nodes v� and v
 are on the edge at z � �� the nodes v� and v
 are on
the lateral sub�surface� and the nodes v� and v�� are in the interior of the top
sub�surface� Again� the notation E�� E�� E�� E� denotes the error for N � �� ���
���� ���� respectively�

Table 
 Maximum errors on an elliptical paraboloid
N ku� � u�Nk� Ratio ku� � u�Nk� Ratio
� ����E�� ����E��

�� ����E�� ���� ����E�� ����
��� ����E�� ���� ����E�� ����
��� ����E�� ���� ����E�� ����

Table � Errors u� � u�N at the selected points ���� on an elliptical paraboloid
i E� E� E� E�	E� E�	E� E�	E�
� �����E�� �����E�� �����E�� ���� ���� ����
� �����E�� �����E�� �����E�� ���� ���� ����
� �����E�� �����E�� �����E�� ���� ���� ����
� �����E�� �����E�� �����E�� ���� ���� ����
� �����E�� �����E�� �����E�� ���� ���� ����
�� �����E�� �����E�� �����E�� ���� ���� ����

On the basis of Table �� the rate of convergence might be either O�b�N � or

O�b��N �� although Theorem ��� implies that the order of convergence should be at least

O�b��N � when the true solution u�P � is a smooth function on each smooth section
of the surface S� By examining the errors given in Table � at a representative set of
node points� it seems likely that the order of convergence for ku� uNk� is higher�

probably O�b��N ��
We give results for the simplex S#�� with �a� b� c� � ��� �� ��� The Neumann

data f was chosen from the true solutions

u��x� y� z� �
�

r
� u��x� y� z� �

�

r
exp��x � �

�
a�	r�� cos��z � �

�
c�	r��

with r �j �x� y� z� � �

�
�a� b� c� j� The integration parameter used was Nd � �� �� ��

� for N � �� ��� ��� ���� respectively� No singular integrations were needed because
the surface was piecewise planar� for the reasons discussed above in connection with
the computation of the solid angle for the L�block�

The results are given in Table ��� From them� one can only say the order of
convergence seems to be at least O�b��N �� From Theorem ���� the error in this case is

O�b��N �� provided the stability result ���� is known to be true�
Table �� Maximum errors on a simplex

N ku� � u�Nk� Ratio ku� � u�Nk� Ratio
� ����E�� ����

�� ����E�� ���� ����E�� ����
�� ����E�� ���� ����E�� ����
��� ����E�� ���� ����E�� ����

The third set of examples are for the L�block� with �a� b� c� � ��� �� ��� The true
solution used is

u��x� y� z� �
�

r
� u��x� y� z� �

�

r
exp��x � �

�
a�	r�� cos��z � �

�
c�	r��

with r �j �x� y� z� � �

�
�a� b� c� j� The integration parameter used was Nd � �� �� �

for N � ��� ���� ���� respectively� No singular integrations were needed because the
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surface was piecewise planar� for the reasons discussed earlier� The maximum errors
at the node points are given in Table ��� In Table ��� we also give the errors at the
individual nodes of ����� to give a more complete picture of the behavior of the error�
The quantities E�� E�� E� represent the error for N � ��� ���� ���� respectively�

From Theorem ���� the error in this case is O�b��N �� provided the stability result
���� is known to be true� The errors in Table �� are insu�cient to predict an order of

convergence� although it appears to be O�b��N � or faster� From Table ��� the errors

appear to be of order O�b��N �� if one is to choose an integer power for the order� Recall
that this surface does not satisfy the assumption V� of 
��
 
the point v� violates
the assumption
� Clearly� our results indicate that this assumption is an artifact of
the method of proof and is unnecessary in practice�

Table �� Maximum errors on an L�block
N ku� � u�Nk� Ratio ku� � u�Nk� Ratio
�� ����E�� ����E��
��� ����E�� ���� ����E�� ����
��� ����E�� ���� ����E�� ����

Table �� Errors in u�N �vi� at representative points on L�block
i E� E� E� E�	E�
� �����E�� �����E�� �����E�� ����
� �����E�� �����E�� �����E�� �����
� �����E�� �����E�� �����E�� ����

�� �����E�� ����E�� ����E�� ����
�� ����E�� ����E�� ����E�� ����
�� �����E�� �����E�� �����E�� ����
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