PIECEWISE POLYNOMIAL COLLOCATION FOR BOUNDARY
INTEGRAL EQUATIONS
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Abstract. This paper considers the numerical solution of boundary integral equations of the
second kind, for Laplace’s equation Au = 0 on connected regions D in R?® with boundary S. The
boundary S is allowed to be smooth or piecewise smooth; and we let {Ax |1 < K < N} be a
triangulation of S. The numerical method is collocation with approximations which are piecewise
quadratic in the parametrization variables, leading to a numerical solution wu . Superconvergence
results for uyy are given for S a smooth surface and for a special type of refinement strategy for the
triangulation. We show u — uy is 0(54 log 6) at the collocation node points, with § the mesh size
for {Af}. Error analyses are given are given for other quantities; and an important error analysis
is given for the approximation of S by piecewise quadratic interpolation on each triangular element,
with S either smooth or piecewise smooth. The convergence result we prove is only O(62); but the
numerical experiments suggest the result is 0(54) for the error at the collocation points, especially for
S a smooth surface. The numerical integration of the collocation integrals is discussed, and extended
numerical examples are given for problems involving both smooth and piecewise smooth surfaces.
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1. Introduction. In this work, we consider the numerical solution of boundary
integral equations of the second kind for solving Laplace’s equation Awu = 0 on
connected regions D in R3. The collocation method with piecewise polynomial
approximations is the numerical method being analyzed. Because of the practical
need to use easily-computable approximations of the surface, we analyze the effect
of using interpolation to approximate the surface of the region. We also discuss the
effect of numerical integration of the collocation integrals;

A major consideration in the error analysis of numerical methods for these bound-
ary integral equations is whether the boundary of D, call it S, is smooth or piecewise
smooth. If S is smooth, then the associated integral operator is compact and there
is a wealth of results available for the error analysis. But if S is only piecewise
smooth, then the integral operator is not compact; and moreover, the operator can
be viewed as involving a Dirac delta function in its definition. In this case, other
methods of error analysis are required. The most widely used techniques originated
with Wendland[23], in which he adapted and greatly extended a technique introduced
in [20] for the theoretical analysis of such integral equations for the planar Dirichlet
problem for Laplace’s equation. We use these ideas of Wendland in our analysis of the
collocation method given below in §5. Other approaches for this case are under devel-
opment; for example, see Elschner[10] in which results of Chandler and Graham[12]
for the planar problem are generalized to Galerkin methods for polyhedral boundaries
in R3, and see Rathsfeld[17].

Two problems for Laplace’s equation and their associated boundary integral equa-
tions are studied in this paper.

P1. The interior Dirichlet problem. Let DD be a bounded, open, simply connected
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region in R3, and let its boundary S be piecewise smooth, which is defined more
precisely in Section 2. The problem is to find w € C(D) N C?*(D) such that

Au(A)=0, A€D
u(P)= f(P), Pe€S

We assume u can be represented as a double layer potential:

(1) u) = [ M@ || ase . aeD

The density function p is determined from the integral equation

@ 2P+ [ K@) || e+ r - APIP) = (7). PES

For notation, vq denotes the unit normal to S at  (if it exists), pointing into
D. The quantity Q(P) is the inner solid angle of S at P € S; and we assume

0< QP) < 4m.
Symbolically, we write the integral equation (2) as
@r+K)p=f
Under suitable assumptions on S,
K:C(S)— C(S)

is a bounded linear operator.

P2. The exterior Neumann problem. Let D and S be as above, and let D, =
R\ D, the region exterior to D and S. The problem is to find « € C(D.)NC?*(D,
such that

Au(A)=0, AE€D,

6;‘55):;’(13), Pes
(3) uw(P)=0(P|™"),|Vu(P) |[=O(| P|7?) as | P|— o0

It can be shown that such a function w exists (under suitable assumptions on S
and f) and that Green’s third identity can be applied to u:

@ ama) = [ QT grdse [ @ | g dse. A€

To find u on S, we solve the integral equation

2ru(P) + /5 u(Q)% [ﬁ] dSq + [27 — Q(P)]u(P)

(5) = [ 1@t g dse. Pes
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Then (4) gives w on D.. Symbolically, we write (5) as
2r+ Ku=38f

with K as before and & the single layer potential integral operator.

The integral equations (2) and (5) are different only in their right hand inho-
mogeneous term. With (5), we can study the error in the numerical solution of the
integral equation by using problems for which we know the true solution of (3). With
equation (2), we do not know the true solution in general (except when f =1); and
thus the numerical solution must be checked indirectly by evaluating (1) numerically
and comparing it to a known solution w. This turns out to also be of interest, because
integral formulas like (1) are generally known to converge faster than is the density
function that solves the integral equation. A further discussion is given later.

In Section 2, we describe briefly the triangulation of the surface S. The colloca-
tion method and the surface approximation are based on piecewise quadratic isopara-
metric interpolation, and this is described in Section 2, together with the numerical
integration methods used in evaluating the collocation integrals. The collocation me-
thod with S smooth is discussed in Section 3, and numerical examples are given
in Section 4. The corresponding results for the collocation method when S is only
piecewise smooth are given in Section 5 and Section 6. Some of the methods of this
paper follow those of Atkinson[2, 3]; but we also involve the new methods of analysis
given in Chien[8], to improve on the error results of the earlier papers.

Although our analysis is for only quadratic approximation, the method being used
will generalize to other degrees of piecewise polynomial approximation. The difficulty
of our argument has led us to specialize to one case; and in addition, it is one of the
more important cases.

2. Preliminaries. We describe the triangulation scheme and associated inter-
polation and quadrature. The method being used was discussed in [2, 3], and we
assume a familiarity with those papers, including the notation used in them.

As discussed in [2], we assume the surface S can be written as

(6) S=8USU---US,

where each S; is a closed, “smooth” surface in R3. The only possible intersection
of a pair S; and S; is to be along a common portion of the edges of these two
sub-surfaces. Assume that for each S, there is a mapping

(7) Fj + Ry e 5 1<j<T,

onto

where R; is a polygonal domain in the plane and Fj € 06(Rj). In this case, we say
S is piecewise smooth. By a smooth surface, we mean that for each point P € S,
there is a neighborhood on S of P, with the neighborhood having a local six-times
continuously differentiable parametrization in R?Z.

The surface S of (6) is divided into a triangular mesh

(8) {AgN[I<SKLSNG
for a sequence N = Nj,Na,... Each S; is to be broken apart into a set of

nonoverlapping triangular shaped elements Ay y,’s, about which we say more below.
In referring to the element Ag w, the reference to N will be omitted, but understood
implicitly. Define the mesh size of (8) by

Sy = max  diam(Ag),
1<K<N
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(9) diam(Ag)= max |p—q].
P9EAK

Let o denote the unit simplex in the st — plane
o= {(s)|0< st s+t<1}.

Let pi1,...,ps denote the three vertices and three midpoints of the sides of o,
numbered according to Figure 1.

P,

p4 p5

A

Py Ps Ps

Fia. 1. The unit simplex

One way of obtaining the triangulation (8) and the mappings from ¢ to each
Ak is by means of the parametric representation (7) for the region S; of (6).
Triangulations of R; map onto triangulations of S;. Since the R;’s are polygonal
domains and can be written as a union of triangles, without loss of generality, we
assume in this paper that the R;’s are triangles . A paraboloid with top is a good
example of an S that satisfies our assumptions; but a circular cone is an example of
an S for which some of above assumptions are not valid, because of the discontinuity
of the gradient at the vertex.

Let Ag be an element in the triangulation of R;, and let vy, U2, and s be
its vertices. Define

(10)  mk(s,t) = F;(uvh + tvs + sts), u=1l—-s—t, (s,t)ec

and let Ag be the image of AK under this mapping. Also, if any two elements
in this triangulation have a side in common, then their intersection will be an entire
side of both triangles. Most surfaces S of interest can be decomposed as in (6), with
each S; representable asin (7). Also, the surface S could be smooth, and we would
often still want to decompose it as in (6).

The mapping (10) is used in defining interpolation and numerical integration on
A . Introduce the node points for Ag by

vij:mK(pj) j:l,...,6
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U,

<)
=)

=)
=)

1 U, 3
Fia. 2. Refinement

Collectively, the node points of the triangulation { Ax } will be denoted by
{vl|1§Z§N’U }a

with N, the number of distinct node points.

The sequence of triangulations (8) will usually be obtained by successive refine-
ments. The refinement process is based on connecting the midpoints of the sides of a
given element Ag. Given {7%1,...,0g}, connect 4, v5,0s by straight lines, as in
Figure 2, producing four new triangular elements. The new elements all are congru-
ent, and they are similar to Agx. More importantly, any symmetric pair of triangles,
as shown in Figure 3, have the following property:

UB UZ
Ul
U4 U5
Fia. 3. A Symmetric pair of triangles
(11) U1—va=—(v1 —v¥y) and U3 —v3=—(v1 —Us)

The assumptions on S and the node points that we made in this section are
for the use of quadratic interpolation. There are other degrees of interpolation that
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can be used, and the assumptions on the smoothness of S and the definition of
the nodes will change appropriately. But the general process of refinement will still
remain the same, and we still subdivide Ag’s in the same way as we do for the
quadratic interpolation.

To define interpolation, introduce the six basis functions for quadratic interpola-
tion on o. Letting v = 1 — (s +1), define

Lis, ) =uu—1), (s, t) =12t —1), I3(s,1) =s(2s—1),
l4(s,t) = 4tu, l5(s,t) = 4st, ls(s,t) = 4su.

Define a corresponding set of basis functions {/; x(¢)} on Ag :
lij(mK(S,t))Ilj(S,t), 1§j§6, 1§[{§N

Given a function f € C(S5), define

6
(12) Pxfa) =D fop)lix(a), 4 €Ak,
j=1
for K = 1,...,N. This is called the piecewise quadratic isoparametric function

interpolating f on the nodes of the mesh {Ag} for S.
It is straightforward that Py is a bounded projection operator and ||Px|| = 5/3.
Also, for any f € C3(5),

(13) 1f = Px fllee = O(6%)

where 6y is the mesh size of the triangulation {AK,N} of R;’s. See [2].

Other kinds of interpolation can be used, such as piecewise cubic isoparametric
interpolation. In this case, we need ten node points, p1, ..., p10, and ten basis func-
tions for the interpolation on . The error analysis is the same, although some what
more complicated.

We also use the same quadratic interpolation scheme to construct an approximate

surface S for S. The approximate surface S is composed of elements Aq,... Ag,
with AK an interpolant of Apg. Write

xh(s,1)
(14) mi(s,t) = | 2% (s,t) |, (s,t) o

23 (s,t)

The reference to K will be omitted, but understood implicitly. Define

6 Yoy @k (pi)i (s, 1)
(15) g (s,1) Z sit)= | Mo zk(pi)li(s.t) (s,t) €
j=1 Sy 5 (pi)l(5,1)
Thus, mg(s,t) interpolates mg(s,t) at {p1,...,ps}, and each component is
quadratic in (s,1).
We introduce two major numerical integration schemes that we have used. The
first numerical integration method is the 3-point rule

(16) /h(s,t) do =~ é > hps) -
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This method has degree of precision two, integrating exactly all quadratic polynomials.
Chien[8] shows that the associated composite rule over S is O(6%) where &y is
the mesh size of {AK}

The 3-point rule is mainly for computing integrals if the integrands are continu-
ous. In order to get the above results, the integrands are required to be four times
continuously differentiable. If the integrands are continuous or smooth on the Ag,
but there is a nearby singularity, we need to use a better numerical integration me-
thod. The second method is the rule T2:5-1 from Stroud[22, p. 314]:

(17) /h(s,t) do =~ ijh(rj).

the weights w; and nodes r; given in the above reference. This formula has degree
of precision five.

3. Collocation on Smooth Boundaries. Our collocation method for solving
an integral equation (A + K)p =g can be written as

(18) (A+PxK)pn =Pnyg, A=27

The function g can be the function f of (2) or Sf of (5). We discuss results for
this approximation; and then later in the section, we give error results for the effect
of using an interpolatory approximation of the smooth surface S.

An important auxiliary solution for the collocation method is the iterated collo-
cation solution:

. 1

pv =39 —Kpn)
It satisfies the equations
(19) (\+KPy)pn = g
(20) PNpN = pN

The questions of stability for (18) and (19) are linked by the identities

S| = >

(21) A+ KPy)~! [I— K\ +PxK) '"Py]

(A+PyK)™' = —[I = Pn(A+KPy)"'K]

The solvability of (18) is determined from the standard theory for projection
methods; for example, see Atkinson[l, pp. 50-62]. With the assumption of (a) com-
pactuness for K : C(S) — C(S), and (b) pointwise convergence on C(S) of the
projections Ppx to I, we have that

(I =Py)K||—=0 as n—o

From this, we have the standard result that if (A + K)~! exists on C(S), then
(A+PnK)~! exists and is uniformly bounded for all sufficiently large N, say N > Nq.
The existence of uniform boundedness of (A + KPy)~! then follows from (21).
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For the error in py and py, use
p—pn = MX+PyK)"H(p — Pnp)
p—pn =—(A+KPn)T'K(p—Pyp)

The quantity K(p—Pnp) often converges to zero more rapidly than does p—Pyp.
Using (20), this will show that px is superconvergent to p at the collocation node
points. We make use of this in the following.

THEOREM 3.1. Consider the integral equation (2) and (5} with solution p. Let
S be a smooth surface in R>, and assume the unknown function p € C*(S). Then

N | = o4 <
(22) (ax [p(vi) —pn(vi) [ = O (5N log 6N)

where gN 15 the mesh size of the triangulation {AK,N} of the R;’s.

Proof. (a) The major part of the proof is concerned with measuring K(I —
Pn)p(P) for all P = wv;, anode point. Later in the proof, we use this to prove (22).
Note we use the exact surface S in this theorem. Since the solid angle Q(P) = 2%
for every P on a smooth surface, the integral equation (2) can be simplified as

mu(P)+ [ @5 [ rgr] 450 = sy pes

Using the triangulation scheme in Section 2, the compact operator K can be

written as

(23)Kp(P) = Z/p(mK(s, t))aiy [ | P_le(S’ 5 |] | Dymg x Dymg | do

For Q = mg(s, 1),

D, D
I/(S,t):l/Q::I: mg X Uymg

| Dsm}( X Dth |

with the sign chosen so that 1, points into the bounded domain D.
Without loss of generality, we assume the sign of 1, is always positive, and (23)

becomes

Dymg x Dymg) - (P —mg(s, 1))

0 Ko(P) = X [ st 0y P e ds di

In order to measure the error K(I—Px)p(P) for P anode point, we need to examine
the local error which is contributed by each Ag.

For each Ag, the integrand of the equation (24) has one singularity at P when
P € Ak, and it is smooth over Ag with P ¢ Ag, although it is increasingly
peaked as P and Ag become closer together. We first compute the error for those
Ag’s which contain P.

For simplifying notation, we assume P = (0,0,0) and mg(0, 0) = (0, 0, 0).
The error in integrating over Ak equals

(Dsmg X Demg) - mg (s, t)
| mi (s, t) [

25) [ (ptmx(s, ) = Paptmx (s, ) ds
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This integral exists even though | mg(0, 0) |= 0. To see this, use the Taylor error
formula for the z% about (s, t) = (0, 0). Then (25) equals

e
(26) /ﬁ@iilw,
s g(s, t; 8%)

where h and g are polynomialsin s and ¢, and their coefficients are of size 0(37)
and O(6%), respectively. Also, h and g are polynomials of degrees two and three,
respectively, which shows the existence of integral (26), and it is O(é6*) [When

speaking of an order of convergence, say one based on 6, the order of convergence is
uniform with respect to any absent variable or index.]
When P ¢ Ak, P—mg never equals zero for (s, t) € o. The kernel function,

K(s, 1),
_ (Dsmg x Dymg) - (P —mg(s, 1))
ws, 1) = P — (s, 1) P

is smooth. Compute the partial derivative &, before expanding x(s, t) about (0, 0).

[Ds(DsmK X Dth)] . (P — mK) — (DsmK X Dth) . Dsm}(

Ks(s, t) =

[P =mi P
_ 3[(Dsm}( X Dth) . (P — mK)] [Dsm}( . (P — mK)]
| P —mg |®
i [Ds(DsmK X Dth)] . (P — mK)
| P —mg |2
_ 3[(Dsm}( X Dth) . (P — mK)] [Dsm}( . (P — mK)]
| P —mg |®

The term (Dymg x Dymg)-Dymg was dropped because (Dsmpg x Dymg) L Dymy.
Also

| (Dsmg x Dymg)-(P—mg) |=|Dsmg X Demg |- | P—mg |- | cosf |

f 1is the angle between the vectors Dymg X Dymg and P — mg, and 8 1s a
function of s and ft;

(27) |cosf | < | P—mg(s,t)]|- constant Y (s,1)

See [16, p. 349]. Therefore, k, is O(EB/d%() where dg =| P — mg(0, 0) |. Use a
similar calculation, &, is also O(6/d%). We now expand k(s,t) about (0, 0)
and have the following formula:

(28) K(s, 1) = #(0, 0) + O(83/d%).
The error of p(mg)— Pyp(mg) is
(29) p(mi) — Puplmr) = Hi(s, 1) + O(6)
where
1 o 0 i o d i
Hi(s, 1) = 57 | (s +15:)%(0,0) Zs]a 5577 (0, 0) (s, 1)

j=1
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Note that (0, 0) and Hg(s,t) are O(gz/d%() and 0(33), respectively.
Combining (28) and (29), we have

/ k(s, 1) (p(mg) — Pnp(mg)) do = / (/@(0, 0)+ O(C(;TK)) Hg(s, t)do

g

FE 86
= 0(@) + 0(@)

for every Ag which does not contain P.

We now add all errors contributed by each Ag. Let T’ be the set of Ag’s
which contain P, and let 7T be the set of the remaining Ag’s, which do not contain
P. Then,

K(p— Pup)(P) = / w(P, Q) (p(Q) — Pxp(Q)) dSg

- Z /n(s, t)(p(mx ) — Pnp(mi))do +

S [ k(s Oplmic) - Pavplimi)) do
(30) =0+ Y [ wls, 0ptme) — Prplin)) do

0(34) is contributed by Ag’s which are in 7, and 7”7 has at most six elements.

The error contributed by each Ag in 7' is 0(35/6@(). Examining the error
carefully, we find that cancellation happens on each symmetric pair of triangles. Thus,
for the dominant terms in the error

k(0, 0)Hi(s, t) + k(0, 0)H,(s, ) = 0

if A; and A; are a symmetric pair of triangles. This improves the error from
0(35/6@() to 0(36/6@() for each Ag that is part of a symmetric pair of triangles.
Let 77 be the set of these kinds of triangles. Let 75 be the set of triangles that are
not in 77.

The error being contributed by triangles in 7% arises from the term

| #(0,0) - Hg (s, 1) |

(DsmK(O, 0) X Dth(O, 0)) . (P — mK(O, 0
| P—mg(0, 0) |3

”\ | (s, 0)|

B ‘| (Dsmg (0, 0) x Dympg (0, 0)) |- | (P —mg(0,0)) ] cosd

B | P —mg(0,0) P ‘ | (s, 1) |

| (Dsmi (0, 0) x Dymg (0, 0)) | | Hic(s, 1) | = O(ﬁ)

- | P — mK(O, 0) | dx

See (27). Thus, the error analysis has been improved from 0(35/6@() to 0(35/dK)
which is contributed by each triangle in 7T5.
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Let
dlP) =d = min{dg | P¢Ag, K =1,...,N }.

For simplicity, we take dx = d,2d,---, depending on how far the Apg is from the
point P. [A somewhat more complicated argument can be based on a lower bound of
a similar type for dg.] Let r = g/d, which is finite for our uniform mesh subdivision
scheme; and d = O(EN). Note the indexing Aj,...,Axy does not indicate distance
from P. But, there is an arrangement of {Ag} where the number of triangles at a
distance R is proportional to R, with R = d, 2d, 3d,-- .

The number ¢; of triangles in 77 at a distance ¢-d 1s proportional to ¢ for
t=1,...,%;. Note that for some integer t;, t; -d is the longest possible distance
from P to trianglesin R;. Adding the error contributed by each triangle in 77, we
have
3?( 8° 4 : 2 1 4 3
ZO(@): ’ Ci'O((i.d)z) = 06 );r = = 0(8"log) .

For the triangles in 7%, the error contributed by each of them is O(@%/dK)
The number of triangles of this type at a distance i-d is a finite number, and it
usually 1s two or three; but the proof is omitted. Therefore,

3}”{ v / 8 4 ~ 1 4 3
ZO(@)IZ%’ 0(—) = 00 );T—- = O(¢"log?)
where c§» is either two or three. This completes the proof that

(31) K(I=Px)p(P) = O(6*1og6)

uniformly for P a node point in the triangulation {Ag n} of S. [This form of
proof is also used in some of the remaining proofs of this paper.]

(b) To show (22), we first note that the error equation for the iterated collocation
solution py 1s given by

(32) (27 + KPN)(p—pn) = —K(I —Pn)p
The linear system associated with this is

(33) 21+ Kn)eny = —en

with

eni = p(vi) = pn(vi) = p(vi) = pw (vi)

ENJIIC(I—'PN)p(Ui), i:l,...,NU.

The matrix of coefficients 27 + Ky is also the same as that for the linear system
associated with the collocation equation (18).

As noted earlier following (21), (27 + KPx)~! is uniformly bounded for all
sufficiently large N. Also, since the iterated collocation equation can be considered
as being a Nystrom method, it is a standard derivation that

127 + Enx) 7' < 27+ KPy)7|
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where the matrix norm is the standard row norm. Combining these results,
(34) l2r+ Kx)Y < ¢ < o0, N>N

for some sufficiently large Ny and some ¢ > 0.
Using this result with (33), and using (31) to bound ||en||oc, we have the desired
result (22). 0

3.1. The single layer integral. For the exterior problem, we need to evaluate
the corresponding single layer integrals on the right hand side of (5). Write

(35)/5%%* Z/ ¥ m;fl;;;H | Dy (s, 1) x Dyig (s, 1) | do

where P 1s one of node points. Note we are including the use of the approximating
surface.

We can see the integrand in (35) varies from singular to quite smooth. To handle
this varied behavior, we use two ways to study errors. The first case 1s for those Ag’s
that contain the point P, and the second case is for the remaining Ag’s.

LEMMA 3.2. Let P be a node point in Ag for some K. Then

[ D) ,0) < D 5) | o

fN(ﬁlK(S,t)) (s « P (s o = <3
[ DT b o,0) < Diincs) | dr = O

where gK 1s the diameter of AK
Proof. There are two cases. The first case is that P 1is a vertex in some Ag,

and the second case is that P is a midpoint of a side of Ag.
Begin with the first case and, without loss of generality, assume that

P = mK(OaO) = 7’71}((0,0) = (plaPZap3)~

Before proving the theorem, we show that

1 _ =1
A|P—mK@w|“”‘O“K’

Compute

1
——do
/a | P —mg(s,1) |

1
= do
/0 [(pr — () + (p2 — 2%(5,1))? + (ps — #3(s,1))°]"/*

:/U [(s2,(0,0) + tz;(0,0))* + (s22(0,0) + tz;(0,0))

-1/2
+(s23(0,0) + t23(0,0))% + O(63) do
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See (14) for x"’s. After integrating the dominant part of the above equation by using
polar coordinates in the st-plane about (0,0), we obtain

1 _ -1
A|P—mK@w|“”‘O“K’

Now, we break the error analysis into three parts.

[ D o) D (5) | o

Sn(mk (s, t))

WTK(SM | DST%K(S,t) X DtT%K(S,t) | do

= FE + Ey + Es

with
30 A= Mﬁ?mQ%#wHMmmew@mw
By = %q Dymic(s, 1) x Dy (s,1) |
(37) — | Dymg(s,t) x Dimg(s,t) | ) do
1 1
EB_/U [I P—mg(s,t) | | P—mg(s,1) |
(38) | Dsﬁl}((s,t) X Dtﬁl}((s,t) | fN(ﬁlK(S,t)) do

In equation (36),

1 -1y <4
|41 < 06%)-06%) - | pmmrde < 0()-0G5") = 0

For the equation (37), we can easily see it has order three:

| By | < H%%X‘ | Dsmg(s,t) x Dymg(s,t) | — | Dsmg(s,t) x Dempg(s,1) |

M o = AN Ae-1y 3
TP —mr(s.)] %7 = OUk) -0 = Ok)

For FEj, expand each z' about (0,0), and then integrate it over o. With a
very lengthy calculation, we can show that FEs is of order three. See [§].

If P is a midpoint of a side of Ag, we split ¢ into two triangles, o7 and o,
and we put the singular point at a vertex in each of the new triangles; see figure 4 for
the case with P = mg(ps). We apply an affine change of variables, to move again
to an integral over o. Applying the first case to these two subtriangles, we again can
show the error is of order three. Thus, the error contributed by the integral over Ag,
which contains P, is always of order three, no matter whether P is a vertex or a
midpoint of a side of Ag. d
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Fia. 4. Splitting triangles

In the next lemma, we examine the errors from integrating over those triangles
Ag which do not contain P. Then, we can combine these two lemmas together and
give the global error for the single layer integration.

LEmMMA 3.3. Let P be a node point, and consider all Ax for which P & Ag.
Then

m st
Z/IP :;Kstﬂ|DmK(5t)><Dth(5t)|da—

(39) Z/ |£N n;::stt;| | Dying (s,1) x Dy (s,1) | do = O(83)

where gK 1s the diameter of Ag.

Proof. Since P ¢ Ak, we can treat the function 1/ | P—mg(s,?) | as a smooth
function. All results from Lemma 3.2 and Theorem (3.3)—(3.7), [8], can be applied
with slight changes. Let (39) be decomposed as Ej + ---+ Eb5 where

g _Z/f(mK(s,t) [| Dsmi x Dymg | — | Dsing x Dymg |]
L= [P (5,0)]

_ [f(mg(s,t) = fn(mi (s, )] | Dsmg x Dymg |
EZ—Z/ | P — mx(s,1) | do

(s (5,0)) — f(mic(5.0)] | Do x Dy |
> [P mx(s.0)] do

_ [f(m (s, 1) = fn(mr (s,))] | Dymg x Dimge |
E?"Z/ | P = mg(s,t) | d
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E4_Z/[meK5t)) __In(mk(s, 1))

Dk x Dy | ds dt
PG )] TP —man(s )] | Do x Demc | ds

| P — mKst)| | P— mg(s,
meKSt)) meKst
5= Z/LP mi(s, ) 1P —fxc(s,0)]

The integrand of E; is O(g%/d%) + O(g}r’(/d%() Using the calculation we had
in Theorem 3.1, we get that FEj is of order three.
For FEs,

flmg (s, 1)) — fn(mi (s, 1))
| P — mK(s t) |

_ &Moo [ b 4~ oEny. L
_;0(5) 0% /U|P_mK(5’t)|d = 0(87) i

for every K where P ¢ Ag. Adding errors from each triangle, we have that FEj is
O(8%), as we discussed in computing E;.
For Fs, we have the error from

flmg (s, 1)) — fn(mi (s, 1))
| P — mK(s 1) |

| Dsmi X Dymg | do

|
—Z/ [ fnlmu(st) _ _Jw(mas ti; |] | Dymic x Dymyc | ds dt
i

{|Dsm}( XDth | —|DST77,K X Dtﬁl}( |} do

| Dsmg x Dymg | do

is 0(36/dK) for every triangle. Again, following the argument in Theorem 3.1, F3
is O(6%).
Analyzing FE4, we have

(40) 1 - : _ o(%k,)
| P—mg(s,t) | | P—iig(s,1)| 2
and
1 1
/ [| P —mg(s,t) | B | P — g (s,t) |:| In(mi(s,t)) | Dsmg x Dimg | do—
1 1 B ~
/ |:| P —mg(s,t) | B | P — mg(s,t) |:| In(mx (s,1)) | Dsmx x Dimg |)dsdt
_ ok
—0(@)

for each Ag. After adding up errors, 4 = 0(35 In g)
For FE5, each triangle give us an error of O(gi’(/dz ). When adding errors to-
gether, cancellation happens at every symmetric pair of triangles and errors become
(66 /d3). Thus, as we discussed in computing FEj, Fj is 0(63) After going
through Fi-FEj5, the global error for the single layer integral, in which P —mg(s,t)
is nonzero for every K, is 0(33). This result is uniform as P ranges over the node
points of the triangulation. O
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Combining the above lemma, we get the following result, which gives the total
error for evaluating the single layer integral at any node point. We use this later to
assess the effect on py of using an approximation to the single layer.

THEOREM 3.4. Let S be a piecewise smooth surface, and let P be a node point
on S. Assume the unknown function f & C*S;)NC(S), i=1,...,J. Then

_fimk(s,t) . ~ — (73
/|P Q|ds Z/ P | Dying (s,t) x Dying (s,t) | do = O(8%) .

mg(s,t) |

Proof. Combine Lemma 3.2 and Lemma 3.3. d

_ 3.2, Using the approximate surface. When using the approximate surface
Sn, the linear system for (2) for the Dirichlet problem becomes

QFﬁN(Uz’) + [27 — Q(v;)] pv (vi )+

(Dsﬁl}((s,t) X Dtﬁl}((s,t)) . (Ui — ﬁl}((s,t))
— UJK /o' ]K(S’t) |UZ'—T77,K(S,t) |3 do

(41):f(vi), i=1,....N,.

IIM®

For a smooth surface S, we would expect to use Qun(P) = Q(P) = 2, thus sim-
plifying the above system. However, for the piecewise smooth surfaces considered in
Section b5, we need to consider an approximation to (P); and from the numerical
examples in Section 4, it is also useful to consider approximations of Q(P) for S a
smooth surface.

Using the identity

(42) QP) = /5% [IPiin] dSq, PeS

(43) ZZ/ ]K St DST%KXDtT%K)~(P—T71K(S,t)) do

P | P — g (s,1) P

Later, in Theorem 5.2 of Section 5, we show that

(44) (max | Q) = Q(vi) [ = 0GR

Empirically for a smooth surface 5, in Section 4, it appears the approximation error
is actually O(8%;), although we have not been able to prove this.
The linear system (41) is denoted here by

(45) (27T—|—AN) PN = gN
with
pni = pyv(vi), g = nv(v), i=1...,N,.

When solving the integral equation (5) for the exterior Neumann problem, we also
approximate the right-hand side, now a single layer integral, using (35). In the above
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frame work, and consistent with earlier notation, we write

N 6 ~ . .

- flmg(s,1)) | Dstg x Dyng |
(46) gN i KZI%; U | v — T%K(S,t) | d
for ¢t =1,..., N,. B
For convergence when using the approximate surface Sy, we have the following
theorem. In Section 4, we give experimental results which suggest that the below

convergence results can be improved.

THEOREM 3.5. Consider the integral equations (2) and (5) with solution p. Let

S be a smooth surface in R3, and assume the unknown function p € C*S). Then

(47) x| p(vr) = P (i) | = O(8%)

Proof. We use a perturbation analysis, based on regarding the system (45) as a
perturbation of the corresponding system

(48) (27TI—|—[(N)pN = gN

for the projection method analyzed in Theorem 3.1 which used the exact surface 5.
From earlier in (34), (27 + Ky )~! is uniformly bounded for all sufficiently large N.
The present analysis uses the result

(49) |Kn — Kn|| = O(6%)

with the matrix row norm. The proof of this is essentially the same as that for (44),
and thus we defer the proof of (60) to Theorem 5.2. Using (49), and the invertibility
of 27+ Ky with the uniform boundness of (27 + Ky)~! , for all sufficiently large
N, we have by standard arguments that the same is true for the inverse of 27 + Ky

(50) 27+ En)7Y < e <00, N>Ny

for some Ny and some ¢ > 0.
By straightforward manipulation of (45) and (48), we have

(1)  pyv—pn = (27 + Ky)7 [K’N - KN] gy + 27 + Kn) 7 gn — Gn]

The first term on the right side is 0(312\,), from (49). The second term is either zero
or O(8%), from Theorem 3.4. When consider with Theorem 3.1, this shows the result
(47). 0

4. Numerical Examples: Smooth Surface Case. The collocation method
of §3, with the use of the quadratic isoparametric interpolation of the surface S, was
implemented with a package of programs which work for a wide variety of smooth
and piecewise smooth surfaces. This package was first described in [2, 3]; and it has
since been updated and improved in several ways. [Eventually, the package will be
made available publicly, with an accompanying user’s manual.]

There are two crucial aspects of the practical implementation that were not dis-
cussed in §3: the calculation of the collocation integrals and the solution of the large
linear systems that often arise from the discretization. The iterative solution of such
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linear systems by two-grid methods is discussed in Atkinson[6]; and thus we restrict
our attention here to the numerical integration of the collocation integrals.

For the numerical integration, we have currently settled on the following schema,
after much experimentation with other approaches. We find that the numerical inte-
gration of the collocation integrals is by far the most time-consuming part in solving
the boundary integral equation. One must have integrals that are sufficiently accu-
rate, to match the accuracy of the “pure” collocation solution ppy. But it is very
wasteful of computing time to calculate these integrals with more accuracy than is
needed.

The collocation integrals in the matrix of coefficients of (41) are given by

(52) /ﬁ(vl,mk(s )l (s,t) | Dsing x Dymy | do

In this, i =1,...,N,, j=1,...,6,and K = 1,...,N; and £(P,Q) denotes
the kernel function for the double layer integral operator. For the exterior Neumann
problem, we also need to evaluate the corresponding single layer integrals

it
(53) / (M (s, )) | Dsimg X Dymg | do
| vi — Mg (s,t) |

Recall from §2 that mg : 0 — Ak is a one-to-one and onto parametrization of the
triangle approximating Ag. We consider two cases in evaluating (52), depending on
whether wv; 1s inside or outside of Ag.

If v; € Ak, then &(v;,@) is singular. We use a change of variable based on
[9]. This was introduced in [3, p. 40], where we noted that it removed all singular
behavior in both the double layer integrals (52) and the corresponding single layer
integrals. Subsequently, we discovered that the change of variables is equivalent to
that introduced in [11]. Others who have since made use of this transformation
include [13] and [21]. The latter paper carries out a detailed analysis of the method
and an extension of the transformation to other singular integration problems arising
in solving boundary integral equations.

Assuming the collocation node v; = mg (0,0), introduce the change of variables

=1 -y t =yx 0<e, y<1

With this, the new integrands in (52) and (53) will be well-behaved. For Ag a
surface with C™ differentiability, m > 3, the transformed integrand for (52) will
be C™~2 times differentiable; and if the density f(Q) is m-times differentiable on
Ak, the transformed integrand for (53) will be C™~! times differentiable. We then
evaluate the transformed integral using a product Gaussian quadrature formula, with
N, nodes in both the z and y coordinates (thus using Ng2 integration nodes). If
vi = mg(0,1) or mg(1,0), then we use an affine transformations to convert back to
the case just discussed. If v; = mg(q;) with j=4,5, or 6, then we divide ¢ into
two parts and treat the integral over each part as described above. As an example,
suppose v; = mg (0,.5). See Figure 4 for the appropriate subdivision of ¢, for which
we use an affine transformation to map each subtriangle onto ¢ in such a way that
the singular point occurs at (0,0).

The above change of variables is used to remove the singularity in the integration
over each triangle. For cases of N = 512 faces, we have found N, =10 to be very
sufficient to preserve the accuracy of the collocation solution; and smaller values of
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N, are sufficient for smaller values of N. Note that the number of integrals (52)
with v; € Ak, for some ¢ and K, is of order N,, whereas the total number of
integrals to be computed is of order N2. Thus when considering operation counts,
the singular integrals are the less important of the integrals (52) to be considered.

For wv; ¢ Ag, the integrand in (52) is analytic; but it is increasingly peaked as
the distance between v; and Apg decreases. A method to evaluate integrals such
as (52) and (53) over ¢ is based on (17), the quadrature rule T2:5-1 of [22]. Let an
integer parameter Ny > 0 be given. If v; ¢ Ag and

dist(vi, AK) S (SN s

where 6y is the mesh size of { Ax} as defined in (9), then integrate (52) using (17)
with Ny levels of subdivision of ¢ [thus dividing ¢ into 4"¢ subtriangles, with
(17) applied to the integral over each of the corresponding subintegrals]. If v; ¢ Ag
and

on < dist(vi,AK) < 26N ,

then integrate (52) using (17) with max{~Ng — 1,0} levels of subdivision of o. If
v; & Ag and

20N < dist(vi,AK) < 36]\7,

then integrate (52) using (17) with max{N4—2,0} levels of subdivision of &. Continue
with this in the obvious way.

We have found that as N is increased to 4N, then raising Ng to Ng+ 1 1s
sufficient to integrate (52) and (53) with the needed accuracy. For all of our examples,
for both smooth and piecewise smooth surfaces, the largest value of Ny that we have
needed to use has been N; = 2. We have used larger values of Ny in our experiments,
to check the accuracy when using the lower values of Ny. When wv; ¢ Ak, other
methods have been tried for evaluating (52) and (53); for example, a method with
automatic error control was described in [3] and [4]. But the method described here
has proven to be the most efficient. Nonetheless, the integrations of (52) and (53) are
still the most expensive parts of our computation, far exceeding the cost of solving
the linear system (23) for the discretized boundary integral equation.

4.1. The Surfaces. Two smooth surfaces were used in our experiments. Surface

#1 (denoted by S#1) was the ellipsoid

2 Y\ 2 2N 2
() +(G) + () =
a b c
In Tables 1-4 given below for this ellipsoid, (a,b,¢) = (2,2.5,3).
The ellipsoid is convex and symmetric. For that reason, we also devised and used

a surface which is not symmetric and which is slightly non-convex. Surface #2 (S#2)

is defined by
(z,9,2) = p(&,n,C)(AE, By, CC), & +n°+¢ =1
with

p€m, Q) =1—[(¢ = 1)* +2(n— 1) = 3(¢ = .1)°)/a
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Fia. 5. Cross sections of “squash” surface

and A, B, C'> 0, o > 5. The case we use here is o = 10 and (A4, B,C) = (2,2,1).
Figure 5 gives the cross-sections of S#2 when intersecting S with vertical planes
containing the z-axis, intersecting at angles of ¢ = 0, 7/4, 7/2 with respect to the
positive z-axis. Experiments were done with other choices of « and (A4, B,C),
corresponding to surfaces with a more pronounced lack of symmetry and convexity.
But in order to obtain error results with some regularity in asymptotic behavior, we
chose the parameters given above, giving the surface illustrated in Figure 5.

4.2. The Solid Angle. At all points P € S, the solid angle Q(P) = 2x. In
Table 1, we give the approximate values of the solid angle for S#1 as computed using
Qn(P) in (43). The points P at which these are given are

v = (0,0,3), vy = (2,0,0), v3 = (0,2.5,0)
vr = (V2,V/4.5,0), wvs=(v2,v/3.125,0), ws = (0,4/3.125,1/4.5)

The subscripts refer to the indexing of node points used in our triangulation package.
The empirical rate of convergence is approximately O(6%). The integration param-
eters used were N, =10 and Ng = 2. The columns FE1, £2, E3, and E4 denote
the errors for N = 8, 32, 128, 512 respectively. [Note that for a given N, the number
of nodeson S is N, = 2(N +1)/]
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Table 1 Solid angle approximations on S#1 at selected wv;

£l
1.52E—-1
8.26E—2
1.17TE-1
1.73E—-1
1.47E-1
2.34E-1

WO OO =1 W MO = =

E2
2.01E-2
1.09E-2
1.55E—-2
2.35E-2
2.00E-2
3.19E-2

E3
2.54E-3
1.38E-3
1.96E-3
3.01E-3
2.56E—-3
4.09E-3

E1/E2
6.58
6.64
6.62
8.13
7.55
8.29

E2/E3
7.58
7.58
7.58
7.34
7.36
7.32

E3/EA
7.89
7.89
7.89
7.82
7.82
7.81

Similar results for the approximate solid angle are true for S#2.

4.3. Solution of the exterior Neumann problem. The problem (3) was
solved with the normal derivative f so chosen that the true solution is known. The
two cases used here are

u(P) = %, uz(P) = %e”ﬂ cos(z/rz)
with P = (x,y,2z) and r =| P |. In this case, p = u; and we use u and uy in our
discussion. Tables 2 and 3 contain the maximum error at the node points for solving
boundary integral equation (5) for S#1 and S#2, respectively. The integration
parameter N, = 10; and for Ng, we used 0, 1, 2, 2 for the cases N = 8, 32, 128,
and 512 respectively, for both S#1 and S#2.

The results in Table 2 for S#1 are consistent with an asymptotic rate for
the error of O(8%) or O(8% logéy), in agreement with the theoretical result in
Theorem 3.1 for the collocation method with the exact surface. In the case of S#?2
in Table 3, the asymptotic pattern for the maximum error appears to be O(8%;); and
to check in more detail whether the error is truly 0(313\,), Table b gives the errors
at a representative sampling of the 18 nodes used in the coarsest triangulation of S
(for N = 8), along with the ratios by which these errors decrease. The columns F1,
E2, E3, and FE4 denote the errors for the parameter N = 8, 32, 128, and 512,
respectively. When looking at the individual errors, there is a pattern of an O(8%)
rate of convergence at a large number of the points; and we conjecture that with larger
values of N, an asymptotic error of O(8%) would emerge for the maximum error.

Table 2 Maximum errors on ellipsoid

[|u1 — uin]loo Ratio |Jus — uan||ee Ratio

8 1.93E—2 1.92E-2
32 1.44FE-3 13.4 2.85E—3 6.7
128 9.68E—5 14.9 2.54E—4 11.2
512 6.09E—6 15.9 1.63E—5 15.6

Table 3 Maximum errors on surface S#2

[|u1 — uin]loo Ratio |Jus — uan||ee Ratio

8 7.26E-2 5.49E—2
32 5.40E-3 13.4 4.85E—-3 11.3
128 8.70E—4 6.2 1.35E—3 3.6
512 1.11E-4 7.9 1.98E—4 6.8

Since these are smooth surfaces, why not use the true value of Q(v;) = 27 , rather
than incorporating the approximation (43) into the discretization of (5)7 Table 5 gives
the values of the maximum error at the node points {v;} with w = u; on S#1,
with Q(v;) = 27 at all node points. Note that now the error is 0(313\,), which is
worse than the convergence rate of O(gﬁ, log gN) predicted by Theorem 3.1 for the
solution wuy.
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The use of the approximation (43) is forcing a favorable cancellation to occur
in forming the discretized linear system (41). Another way of looking at what is
happening is the following. The matrix of coefficients (41) is forced to have 47 as
an eigenvalue, with the eigenvector being the vector with all components equal to 1.
This makes the discretized system exactly like the original integral equation (5), in
which the function w«(P) = 1 is an eigenfunction of the left side of (5), with the
eigenvalue being 4w.

Table 4 Errors at representative v; on S#2, for u= u

N E2 E3 F4 F1/E2 FE2/E3 F3/F4
1 —-526E-3 —-4.77TE—4 -3.14E-5 8.4 11.0 15.2
2 —4.25E-3 —-281E-4 —1.78E-5 11.3 15.1 15.8
5 —5.41E-3 —-3.28E—4 —224E-5 13.4 16.5 14.6
7 —3.09E-3 —8.0bE-5 1.30E-bH 16.9 384 —6.2
8 —4.58E-3 -—-3.80E-4 —262E-5 10.9 12.0 14.5
12 —-540E-3 —-4.63E—4 —3.35E-5 9.6 11.7 13.8
13 —-3.16E-3 —1.52E—4 2.84FK—6 16.8 20.8 —53.3
15 —-252E-3 —-7.91E-5 9.18E—6 18.2 31.9 —8.6
18 —-251E-3 —-151E—-4 —3.04E-6 17.7 16.6 49.8
It is clearly preferable to use the approximate solid angle rather than the exact
one. The cost of using the approximation (43) is minimal, since all quantities used
have been calculated in setting up the linear system (41).
Table 5 Errors for u = u; on the ellipsoid S#1 with use of the exact solid angle
Q=27
N JJus —uin|lec  Ratio
8 9.75E-2
32 1.35E—2 7.24
128 3.26E-3 4.13
512 4.37E—-4 7.45

4.4. The interior Dirichlet problem. We solve the integral equation (2), for
the interior Dirichlet problem, with the same procedures as described above for the
exterior Neumann problem. To complete the solution process, we must then calculate
numerically the integral (1). Letting py denote the approximate density function
thus obtained, we must evaluate

(54) un(A) I/SPNN(Q)% [L] dSg, AeD

From [8], the rate of convergence will be O(gﬁ,) when the quadrature is based
on standard symmetric numerical integration rules over the unit simplex with a suf-
ficiently high degree of precision, e.g. the rules (16) and (17).

Expand the integral in (54) as

The triangulation {Ag} being used here need not be the same as the one used in
obtaining py; but the two triangulations should be compatible in sense that one is
a refinement of the other. For those triangles Ay which are close to the field point
A, the integration should be done with more accuracy than for those triangles which
are relatively far from the field point.
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It has been our experience that the density function px can be relatively inac-
curate, and quite acceptable accuracy in the solution wupy(A) can still be obtained.
The accuracy in the solution wuy 1is dependent much more on the accuracy of the
numerical integration of (55) than on having high accuracy in pn. This should not
be especially surprising, as it is well known that integration is a “smoothing” opera-
tion, and the effect of errors in the integrand, including py, are reduced. Extended
examples to illustrate this are given in the technical report [4], and we omit them here
for reasons of space.

5. Collocation on Piecewise Smooth Boundaries. As in §3, we first ana-
lyze the collocation method (27 + PnK)pny = PnSf for (5) by assuming the exact
representation of the surface is used in all integrations; and following that, we ana-
lyze the effect of using a quadratic interpolatory representation of the surface. For
polyhedral boundaries, there is no need to approximate the boundary, and these are
the cases analyzed in [10] and [17].

As in [2], we use a stability analysis based on Wendland[23]; and then as in §3,
we analyze the discretization error for the iterated collocation solution:

. 1

pn = 59— Kpn)
In [23], a piecewise constant collocation method is defined and analyzed. The proofs
given there generalize easily to our collocation method based on quadratic isopara-
metric interpolation. In Wendland’s paper, he makes several assumptions about the
piecewise smooth surface S, in addition to those described in §2. Assumption V3 of
his paper states that at all points of S, either the inner or the outer tangent cone
must be convex; and assumption V4 states that all edges of S must be piecewise
continuous and must not contain any cusps. Within this setting, it is straightforward
to prove the following.

THEOREM H.1. Let S satisfy the assumptions given above and earlier in §2; and

let S also salisfy the assumptions V3 and Vj of [23], as discussed above preceding
the theorem. Moreover, assume

5
(56) —sup |27 — Q(P) |< 27
3 pes

Let Py denote the interpolatory projection of (12), based on quadratic isoparametric
interpolation over the triangulation {Ag | K =1,...,N}. Then for all sufficiently
large N, say N > Ny, and for some ¢ < 00,

(57) |27 +PNK)" M <e, N> Ny
Moreover, this implies that

(58) 27+ KPn) " <e, N> Ng
For the error,

(59) lp— pxll < O(E3)

Proof. We refer to the derivation in [23]. Essentially, the problem of analyzing
(27 + PnK)pn = Pnyg is divided into two parts. Begin by decomposing the surface
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S into two subdomains based on distance to an edge or vertex of S. Let T denote
the union of all edges and vertices of the surface S. For a given e > 0, let

S;={PesS | dist(P,T) < ¢}
and let Ss be the closure of S — S;. Consider spaces C'(S;), ¢ = 1,2, and define
integral operators K;; : C(S;) — C(S;) by
1
| P-Q]

The final term [27 — Q(P)]p(P) needs to be included only when ¢ = j = 1. For
(1,7) # (1,1), the operators K;; are compact.

Define X = C(S;) @ C(S;). Then the original boundary integral equation (5) for
the exterior Neumann problem, (274 K)p = Sf, and the collocation equation for its
solution, (27 4+ PyK)pn = PnS/f, can be reformulated, respectively, as

[QW-I-ICM Ki2 ][m]:[m]
Ka1 2m + Ko P2 g2

(60) [ 2+ PinKi1 PinKia ] [ PIN ] _ [ (Png) ]

PaonKai 21 + Pan Koo P2N (Png)2

ko) = [ @ |

= ] dSq + [27 — Q(P)]p(P), P € S;, p € C(S;)
s; e

We assume that the interpolation operator Py is so defined that Pyp | S; depends
on p at only the node points within S;. Then we can define P; : C(S;) — C(S;)
by

(61) Pinp=Pyp|Si  peC(S) i=1,2

Using the methods of [23], it is straightforward to show that if ¢ is chosen

sufficiently small, then 27 +K1; : C(S1 )%»C(Sl); and moreover, for all sufficiently
large N,

(62) |

Using this, operate on (60) and (61) to obtain

[ I 27+ K1) Ko ] [m ] _ [ 27+ K1)t ]

(27T—|—7?1NIC11)_1|| < ec< o

=Ko I+ =Ko P2 =42
1 (27 + PinK11) " PivK12 PIN
=PanKa I+ =PanKas p2N

_ [ (27+77f(’7€?11);)1(7’wg)1 ]

We write these equations in the simpler forms
(63) (I+H)p = r, (I+HN)PN = N
respectively, with 5 = [p1, paIT, v = [pu, pan].

The operator H : X — X is compact; and the family {Hy} is a pointwise
convergent and collectively compact family, converging pointwise to H. With the



PIECEWISE POLYNOMIAL COLLOCATION FOR BIE 25

known invertibility of 274K on C(S), we can obtain the invertibility of I+7H. Using
the theory of collectively compact operator approximations, we have the existence and
uniform boundedness of (I+Hx)~! for all sufficiently large N; and this leads directly
to the result (57) asserted in the theorem. The result (58) follows from the identity
(21) given earlier.

For convergence of the collocation solutions {py }, the standard result

1 -
(64) llp = pnlles < o=l + Py K)o = Prvplles

implies |[|p — pnllec = O(gj?{,) from the bound (13) for interpolation error. 0

The condition (56) and the other assumptions of [23] on the solid angle are quite
restrictive; and it is clear from the numerical examples that they are not necessary
in practice. Other somewhat less restrictive assumptions on S are given in [14],
[15], [17]-[19]; but for our proof of stability, we still require (56). Our results on rates
of convergence assume only the stability results (57) and (58), not on how they are
obtained. Other tools for proving stability are given in [10] and [12], and it may be
possible to adapt them to our use of piecewise polynomial isoparametric interpolation.
Again, they consider only polyhedral surfaces, and thus do not need to approximate
the surface.

We cannot show superconvergence of gy at the node points (which was shown
in Theorem 3.1 for S a smooth surface.) For S only piecewise smooth, K is no
longer a smoothing operator, and that appears to prevent superconvergence.

5.1. Using the approximate surface. In practice, we solve the linear system
(41), which uses the approximate surface Sy. We also approximate the solid angle
Q(P) by the quantity Qn(P) defined in (43).

THEOREM 5.2. Let S be a piecewise smooth surface, and let P be a node point
on S. Then

QP) - Qn(P) = O(&%) .

Proof. We first compute the error contributed by Ay which contains P.
Without loss of generality, assume P = mg(0,0). Let

P = (p1, p2, p3) = mk(0,0) = mg(0,0).

We break error over Ag into two parts:

P —mg(s,t)
FE = Dy D . —
1 /U[( mi X Dymg) P — g (s,0) P
- - P —mg(s,t
(65) (Dsing X Dyig) - o m;f((s t))|3] ds dt
and

P— ﬁl}((s,t)
| P—mg(s,t) |3

Ez I/ |:(DST77,K X Dtﬁl}()

P— ﬁl}((s,t)
'|P—mK@¢H4‘“'

(66) (Dsﬁl}( X Dtﬁl}()
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We now manipulate the first part of the integrand of (65).

P —mg(s,t)
| P—mg(s,t) |3

(Dsmg (s,t) x Dymg (s, 1))

2,3 3,2 3.1 1.3 ,.1,.2 2.1 1 2 3
rixy — wiwy, wiey —wywy, vywi —xiry) (pr—=x, pa—x®, p3—2°)

((pr = @17+ (2 — 27 + (ps — 27 2PP?

(61) =

Using the Taylor error formula for the =z about (s,t) = (0,0), the numerator of
equation (67) becomes
(wia] —2la?, alu) — wiad, wpw} — i) - (p1— ', pa— 2, ps — &%)
= (wyary — aiw,)(s7 2, + 2stay + 0ag) + (wja] — afe)(s%a,, + 25ty + )
+ (e} —wjad)(sPal, + 2stad, + 70d) + O(6%) .
Computing the corresponding part of the second term of (65) with the same
formula as we had above,

(Dsﬁl}( X Dtﬁl}() . (P — ﬁl}((s,t))

= (wpwd — o) (572, + 2staly + 7y + (wfal — 2wd) (s, + 25ty +tay,)

(68) + (¢3x! — 2la®)(s%2?, + 2sta?, + t72%) + O(6%)
Thus,
(Dymg X Dymg) - (P —mg(s,1)) — (Dsmg X Dymg) - (P —mg(s, 1)) = 0(5}:’()
Expanding each 2! about (0,0), the denominator of (67) is
[(pr = ")+ (p2 = 2%)° o+ (ps = )72 = O(| b |7°)

Then

bl

do

/ (DsmK X Dth) . (P — mK(s,t)) — (Dsﬁl}( X Dtﬁl}() . (P — ﬁl}((s,t))
o | P —mi(s,t) [°

(69= O(6%)

Note there are at most six triangles containing the node point P, and the total error
contributed from the Ag’s which contain P is O(6%).
To analyze FEs, we need to know the error from the following:

1 1
[P—mx(s 0P [P—mx(s0) P
< ‘ 1 1 ‘ 1
S TP =m0 1P=mx(01| | TP=mx(s.0) ]

1 1

T TPk O DI P—mn (D) | [P=mx(s0) P
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Then, from the above result and (68), we have the following error analysis for Fa:

1
| P—mg(s,t) |3

/U(DsﬁzK x Dymg) - (P — g (s, t)) [

(70) L] o] < 006z = o)

| P—g(s,t) P

Combining (69) and (70), we complete the proof of the first step, for Ag containing
P.

Consider errors contributed by all Agx for which P ¢ Ag . Since P & Ag,
again, we can treat the function 1/ | P — mg(s,t) |> as a smooth function. This
proof will have two parts, as with Theorem 3.1, and we use results from the latter.
Let dg, d, and r be the same as in Theorem 3.1.

Decompose the second part of proof as F; and Fs, the same as above in (65)
and (67), respectively. In the previous part, we assumed that P = mg(0,0); and we
now assume

P # mg(s,t), Vis,t)eo.
Expand each z! about (s,t) =(0,0) and compute

(DsmK X Dth) . (P — mK(s,t)) — (Dsﬁl}( X Dtﬁl}() . (P — ﬁl}((s,t))
= E4(S,t; 62 — 61, 63 — 61) —|— E5(S,t; 62 — 61, 63 — 61) —|— O(g%)

__F4is a homogeneous polynomial of degree 3 in s and ¢, and its coefficients are
O(6% - di). Integrating E4 over o yields zero. E5 is also a polynomial in s and

t. Its coefficients are 0(5}5{)’ and FEb5 has the “odd function” property:
E5(S,t; —(62 - 61), —(63 - 61)) = —E5(S,t; 62 - 61, 63 - 61) .
Thus, cancellation occurs.
For examining FEj, we need to expand the function | P — mg(s,t) |73 about

(s,t) = (0,0). Then we obtain

(DsmK X Dth) . (P — mK(s,t)) — (Dsﬁl}( X Dtﬁl}() . (P — ﬁl}((s,t))
| P—mg(s,t) |3

E4+ E5 + 0(8%)
[(p1 = 21(0,0))? + (p2 — 22(0,0))? + (ps — £3(0, 0))?]3/2

(71) - (E4+E5+0(3%))e+0(%)

where e is a polynomialin s and ¢, and its coefficients are O(gK/d‘}(). Integrating
(71) over o, the error contributed by each Ag is O(8% /d5) + O(8% /d%). Then,

~

the global error E; can be shown, using earlier methods, to be O(6?).
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For computing FEs, we first calculate

1 1
TP k0P TPkl F |
<| 1 1 | | 1
S TG T TP—mwe0l | TP P
1 1
(72) + +

(I P=mi(s,0) DO| P —mr(s, ) [) | P—mx(st)[? |

Using (40), (72) is O(g?(/d%() -0(1/d%) = O(g?(/d‘}() Therefore, the integrand of
E2 1s

~ ~ ~ 1 1
(DsmK XDth)'(P_mK(Sat)) |P—mK(5,t) |3 N |P—771K(5at) |3”
< 0(FH) -0 - 0(3F) = 0(GF)

Thus, the error contributed by each Ag is O(g;:’(/d?(), and Fs is of order two.
This proves the theorem. An almost identical proof also shows the result (49) used
in the proof Theorem 3.5, and we omit the details. d

The above theorem shows the difference between the value of solid angle and
the approximate value of the solid angle. This result is not as good as desired. For
smooth surfaces, the empirical rate seems to be O(63;), from the example of Table 1
and other similar examples. But the empirical results for piecewise smooth surfaces,
given in the following section, do not clearly indicate a convergence rate.

THEOREM 5.3. Let S be a piecewise smooth surface, satisfying the assumptions
of Section 2, the hypotheses of [23] as descried earlier, and the solid angle assumption
(56). Let p be a solution of (2) or (5), with pe€ C(S)NCHS;), j=1,...,J. Let
PN be the solution of the system (41) which uses the approzimation Sy for S.
Then

N_ 5 N — 2
(max [ p(vi) = pn(vi) [ = O(6x)
Proof. This is proven by combining the techniques used in the proof of Theorem
3.5, together with the results of Theorem 5.1 for the collocation method for (2) or (5)
when the original surface S is used. We omit the details O

6. Numerical Examples: Piecewise-Smooth Surface Case. The colloca-
tion integrals in the linear system (41) were evaluated with the same type of numerical
integration as was used when S was a smooth surface. The two-grid iteration method
for solving the linear system required a modification from that used for the smooth
surface case, and this is explored in [6]. Below we give examples for several piecewise
smooth surfaces, to empirically study the rate of convergence of the projection me-
thod and to illustrate some of the results of §5. Since we are solving (5), we replace
p with u.

Note that in our examples, the true solutions w(P) are all smooth functions
when P 1is off the boundary, and they are piecewise-smooth on the boundary. In
contrast, the presence of a piecewise smooth boundary usually leads to solutions that
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are 1ll-behaved in a neighborhood of all edges and corners of the surface S. To deal
with such solutions, a graded triangular mesh is needed. A theory describing the form
of grading needed for Galerkin’s method has been developed recently; in [10]; and for
collocation methods, a theory is described in [17]. These results are all limited to
polyhedral boundaries.

6.1. The surfaces. We describe three surfaces, two of which are polyhedral.
The first surface (S#1) is an elliptical paraboloid with a cap:

EF ()= osese

@) e o=

The second surface (S#2) is the tetrahedron

x Yy =z
—4+c4 i< >
(@) S+l 42 <t0y:20)

The third surface (S#3) is an “L-block”, described as follows. Define
Lo=[0,1]x[0,2]U[0,2] x [0,1] C R?
Do =1[0,1] x Ly C R?
D = {(az,by,cz) | (x,y,2) € Do}

and let S be the boundary of D. With all three surfaces, the constants «, b, and
¢ are positive.

Surface #1 was chosen to illustrate the use of a curved surface, so that the use of
the interpolatory approximate surface S would be non-trivial. Surface #2 encloses
a convex region, and all boundary points satisfy the hypotheses of [23] although the
angle assumption (56) is not satisfied. Surface #3 is also polyhedral; but now it
encloses a nonconvex region. Moreover, some of the angles on the surface do not
satisfy the assumption V3 of [23]. [V3 states that at each point of the boundary,
either the interior or the exterior tangent cone must be convex.] For example, the
tangent cones at (x,y,z) = (0,1,1) and (1,1,1) do not satisfy V3. Working with
S#3 allows us to test whether or not the assumption V3 is necessary empirically.
However, this surface does satisfy the assumptions of [14], which extends the earlier
results of [23] to a slightly larger class of surfaces, albeit in a modified function space.

6.2. The solid angle. We again use the approximation (43) to approximate the
interior solid angle Q(v) at points v € S, thus forcing all rows of the coefficient
matrix for the linear system (41) to equal 4m. Results for an elliptical paraboloid
(S#1) are given in Table 6 at the following representative nodes:

v = (0, 0, 0), Vg = (2, 0, 1), Vg = (0, 0, 1)
1}7:(1a0a'25)a USI(\/ia\/ia 1)a 015:(1a0a1)

The parameters used for the surface were (a,b,¢) = (2,2,1); and the integration
parameters were N, =10 and Ng=0,1,2, 2for N =8, 32, 128, 512, respectively.

In Table 6, some of the entries have a rapid decrease in size as N increases, and
then the error stops decreasing and remains around 1077 to 107%. Tt seems likely
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that the latter is due to the limited accuracy in the numerical integration method,
although we have not tested this. In general, there appears to be no pattern to the
rate at which the error decreases. The case of Q(vs) is of interest, as the error in this
case is much larger than for the other cases, again for unknown reasons. According
to Theorem 5.2, the errors should converge with a rate of at least O(6%); but only
for the node wvg does this seem to be the case.
Table 6 Solid angle approximations on an elliptical paraboloid at selected wv;
i Q) El E2 E3 F4
1 27 2.35E—3 —8.43E—-6 1.52E—-8 —2.30E-8
2 7/2 1.28E-1 1.99E—2 9.08E—3 3.33E—4
6 27 1.92E—-2 —7.82E-7 1.16E—8 —8.07TE-8
7 27 6.51E—1 5.69E-2 —3.95E—4 —2.59E-3
8 7w/2 256E—1 1.59E—1 4.08E-2 1.00E-2
15 27 1.69E—1 —-1.72E—4 4.80E-8 1.38E—7
The results for a polyhedral surface were much better. Table 7 contains results
for the L-block (S#3) at the following representative nodes:

vy = (0,0,0), vy = (0,0, 1), vg = (0,1,1)

(73)

V17 = (5,0,15), Vap = (5,0,15), V33 = (5,1,1)
There is no approximation of the surface in this case, and thus all errors are due to
the numerical integration being used. The resulting errors are very small.

The parameters for the L-block are (a,b,¢) = (1,1,1); and for the integration
parameters, we used Nz =0, 1, 2 for N = 28, 112, 448, respectively. Note that in
this case, there are no singular integrals, as the double layer kernel function K(P, Q)
is identically zero when P and @ belong to the same planar surface. The columns
E1, E2,and E3 denote the errors at the given v;, for N = 28, 112, 448 respectively.

Table 7 Solid angle approximations on an L-block at selected wv;

i Qv) E1l E2 E3
1 7/2 —981E—5 —239E—6 —230E—8
T 3.59E—4  3.95E—6  3.40E—8

9 3m/2 5.60E—4 5.53E—-6 4.10E-8
17 27 1.88E—-2 2.88E—6 —4.42E-7
20 27 —1.87E-2 1.03E—-6 —-3.72E-7
33 3 —3.36E-2 1.01E-5 —6.68E-7

6.3. Solution of the exterior Neumann problem. We begin with the solu-
tion of (3) for the elliptical paraboloid (S#1). The problem (3) was solved with the
normal derivative f chosen from the true solution wu. The two cases used were

ur(e,y,z) = %, ua(®,y,2) = %exp(x/rz) cos((z — %c)/rz)

with r =| (z,y,z) — (0,0, %c) |.

Table 8 contains the maximum errors at the node points, for (a,b,¢) = (2,2,2).
The integration parameters used were N, = 10 and Ng =0,1, 2, 2 for N = 8§,
32, 128, 512, respectively. To better understand the behavior of the error, Table 9
contains the errors for wuyn at the following representative vertices wv; :

vy = (0,0,0), vy = (V/38,0,2), vs = (0,0,2)

T vr = (v/2,0,.5), vg = (2,2,2), vis = (v/2,0,2)
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The nodes v» and wsg are on the edge at z = 2, the nodes v; and wvg are on
the lateral sub-surface, and the nodes wg and wvy5 are in the interior of the top
sub-surface. Again, the notation FE1, F2, F3, E4 denotes the error for N = 8§, 32,
128, 512, respectively.

Table 8 Maximum errors on an elliptical paraboloid

N |lus — win|lec  Ratio  |Juz — uan|lec  Ratio

8 2.89E—2 6.87TE—2

32 7.26E—3 3.98 1.32E—-2 5.23

128 2.75E—3 2.65 4.47E-3 2.94

512 8.73E—4 3.15 1.46E—-3 3.06

Table 9 Errors u; —uin  at the selected points (74) on an elliptical paraboloid
? E2 E3 F4 FE1/E2 FE2/E3 FE3/FE4
1 —6.50E-3 —-2.12E-3 —-4.87kE—4 4.45 3.07 4.35
2 —-162E-3 -3.16E—4 —4.01E-5 1.49 5.13 7.88
6 —-7.26E-3 —-121E-3 —-1.39E-4 1.07 5.99 8.71
7 —6.05E-3 —-928E—4 —1.19E-4 2.92 6.16 8.23
8 —245E-3 —442E—-4 —b5.69E-bH 1.75 5.53 7.76
15 —5.23E—-3 —-8.1bE—4 —-9.19E-5 0.80 6.42 8.87

On the basis of Table 8, the rate of convergence might be either O(EN) or

o~

O(6%); although Theorem 5.3 implies that the order of convergence should be at least
0(312\,) when the true solution u(P) is a smooth function on each smooth section
of the surface S. By examining the errors given in Table 9 at a representative set of
node points, it seems likely that the order of convergence for ||u — un||co is higher,
probably O(gj?{,)

We give results for the simplex S#2, with (a,b,¢) = (3,3,3). The Neumann
data f was chosen from the true solutions

ur(e,y, 2) = %, ua(®,y,2) = %exp((x — %a)/rz) cos((z — %c)/rz)

with r =| (z,y,2) — %(a, b,c) |. The integration parameter used was Ng = 0, 1, 2,
3 for N =4, 16, 64, 256, respectively. No singular integrations were needed because
the surface was piecewise planar, for the reasons discussed above in connection with
the computation of the solid angle for the L-block.

The results are given in Table 10. From them, one can only say the order of
convergence seems to be at least O(6%). From Theorem 5.1, the error in this case is

o~

O(63;), provided the stability result (57) is known to be true.
Table 10 Maximum errors on a simplex

N |lus — win|lec  Ratio  |Juz — uan|lec  Ratio
4 4.49E—-1 2.17
16 2.16E—-2 20.8 7.50E—-1 2.89
64 1.08E—-2 2.00 1.06E—1 7.08
256 5.79E—4 18.6 1.96E—2 5.41

The third set of examples are for the L-block, with (a,b,¢) = (1,1,1). The true
solution used is

ur(e,y, 2) = %, ua(®,y,2) = %exp((x — %a)/rz) cos((z — %c)/rz)

with » =| (z,y,2) — %(a,b,c) |. The integration parameter used was Ny = 0, 1, 2
for N =28, 112, 448, respectively. No singular integrations were needed because the
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surface was piecewise planar, for the reasons discussed earlier. The maximum errors
at the node points are given in Table 11. In Table 12, we also give the errors at the
individual nodes of (73), to give a more complete picture of the behavior of the error.
The quantities E1, £2, E3 represent the error for N = 28, 112, 448, respectively.

From Theorem 5.1, the error in this case is 0(313\,), provided the stability result
(57) is known to be true. The errors in Table 11 are insufficient to predict an order of
convergence, although it appears to be O(gj?{,) or faster. From Table 12, the errors
appear to be of order O(gj{,), if one is to choose an integer power for the order. Recall
that this surface does not satisfy the assumption V3 of [23] [the point vy violates
the assumption]. Clearly, our results indicate that this assumption is an artifact of
the method of proof and is unnecessary in practice.

Table 11 Maximum errors on an L-block

N lur — uin]|eo Ratio [|s — uan]leoc  Ratio
28 2.58E—-2 6.10E—1

112 1.53E-3 16.9 7.56E—2 8.07

448 2.10E—4 7.29 3.69E—-3 20.5

Table 12 Errors in u1n(v;) at representative points on L-block
1 El E?2 E3 E2/E3
1 —-751E-3 —-7.71E-5 —-327E-6 23.6
7 —849E—-4 -7.75E-5 —4.19E-7 185.0
9 —-983E-3 —-3.82E—4 —1.70E-5 22.6
17 —1.11E-3 2.58E—4 2.06E-5 12.6
20 7.22E—4 3.88E—4 3.06E-5 12.7
33 —2.58E—-2 —153E-3 —-9.26E-5 16.5
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