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Abstract. Consider being given a mapping ϕ : Sd−1
1−1−→
onto

∂Ω, with ∂Ω the (d− 1)-dimensional

smooth boundary surface for a bounded open simply-connected region Ω in Rd, d ≥ 2. We consider

the problem of constructing an extension Φ : Bd
1−1−→
onto

Ω with Bd the open unit ball in Rd. The
mapping is also required to be continuously differentiable with a non-singular Jacobian matrix at all
points. We discuss ways of obtaining initial guesses for such a mapping Φ and of then improving it
by an iteration method.
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1. Introduction. Consider the following problem. We are given

(1.1) ϕ : ∂Bd
1−1−→
onto

∂Ω

with ϕ a continuously differentiable function. For notation, Bd is the open unit ball in
Rd with boundary Sd−1 = ∂Bd, d ≥ 2, and Ω is an open, bounded, simply-connected
region in Rd. We want to construct a continuously differentiable extension

(1.2) Φ : Bd
1−1−→
onto

Ω

such that

Φ|Sd−1 = ϕ(1.3)

det (DΦ (x)) 6= 0, x ∈ Bd(1.4)

J (x) ≡ DΦ (x) denotes the d× d Jacobian of Φ (x),

(DΦ (x))i,j =
∂Φi(x)

∂xj
, x ∈ Bd

Without any loss of generality, we assume det J (x) > 0 for all x ∈ Bd. The theoretical
existence of such an extension Φ is a diffi cult question in general, but it is certainly
true when the region Ω is starlike, as we demonstrate contructively in this paper.

As a particular case, let d = 2 and consider extending a smooth mapping

ϕ : S1
1−1−→
onto

∂Ω

with Ω an open, bounded region in R2 and ϕ a smooth mapping. For planar regions
with a smooth boundary, a conformal mapping will give a desirable mapping from B2
to Ω (although it is probably not an extension of the given function ϕ); but finding
the conformal mapping is often nontrivial. In addition, our eventual applications need
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the Jacobian DΦ (see [1], [4], [5]), and obtaining explicitly DΦ is diffi cult with most
methods for constructing conformal mappings. As an example, let ϕ define an ellipse,

ϕ (cos θ, sin θ) = (a cos θ, b sin θ) , 0 ≤ θ ≤ 2π

with a, b > 0. The conformal mapping of the closed unit disk onto the closed region
with this ellipse as its boundary in the complex plane C has a complicated construction
requiring elliptic functions (e.g. see [2, §5]). In comparison, the much simpler mapping

Φ (x1, x2) = (ax1, bx2) , x ∈ B2

is suffi cient for most applications. Also, for d > 2, constructing a conformal mapping
is no longer an option.

As motivation for obtaining such an extension Φ, consider the elliptic partial
differential equation

(1.5) −
d∑

i,j=1

∂

∂si

(
ai,j(s)

∂u(s)

∂sj

)
+ γ(s)u(s) = f(s), s ∈ Ω ⊆ Rd

with Ω a bounded simply-connected region in Rd with a smooth boundary ∂Ω. The
matrix A (s) = [ai,j(s)] is assumed to be symmetric and to satisfy

(1.6) ξTA(s)ξ ≥ c0ξTξ, s ∈ Ω, ξ ∈ Rd

with c0 > 0. The boundary ∂Ω is known, say by a mapping such as that in (1.1).
If the extension Φ satisfying (1.3)-(1.4) is known explicitly, then the equation (1.5)
can be converted to an equivalent elliptic problem over the unit ball Bd; and the
new formulation can then be solved numerically using a ‘spectral method’over Bd.
Introduce

s = Φ (x) , ũ (x) = u (Φ (x)) , f̃ (x) = f (Φ (x))

Then (1.5) becomes

(1.7)
−

d∑
i,j=1

∂

∂xi

(
det (J(x)) ãi,j(x)

∂ũ(x)

∂xj

)
+ det (J(x)) γ(Φ (x))ũ(x)

= det (J(x)) f̃ (x) , x ∈ Bd

The matrix Ã (x) = [ãi,j(x)]
d
i,j=1 is defined by

(1.8) Ã (x) = J (x)
−1
A(Φ (x))J (x)

−T

The matrix Ã (x) satisfies the same strong ellipticity property as in (1.6), but over the
unit ball Bd and with a different constant c0. Transformations of partial differential
equations are common in the literature, although they are often used to simplify
the equation. In our case, we are using the transformation to simplify the region,
obtaining a region for which spectral methods can be defined more easily.

Other than the quite large literature on constructing conformal mappings for
planar regions, there is, surprisingly, not much literature about our problem. The
most useful appears in the area of automatic grid generation for the solution of partial
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differential equations, although it differs from our desire to produce explicitly the
mapping function Φ. We note in particular the works of Castillo [6] and Liseikin [7].

In §2 we consider various methods that can be used to construct Φ, with much of
our work considering regions Ω that are ‘star-like’with respect to the origin:

ϕ (x) = ρ (x)x, x ∈ Sd−1(1.9)

ρ : Sd−1
1−1−→
onto

R>0

For convex regions Ω, an integration based formula is given, analyzed, and illustrated
in §3. In §4 we present an optimization based iteration method for improving ‘initial
guesses’for Φ. Most of the presentation will be for the planar case (d = 2); the case
of d = 3 is presented in §5.

2. Constructions of Φ. Let Ω be star-like with respect to the origin. We begin
with an illustration of an apparently simple construction that does not work in most
cases. Consider that our initial mapping ϕ is of the form (1.9). Define

Φ (x) = rρ̂ (θ) (cos θ, sin θ) , 0 ≤ r ≤ 1(2.1)

= ρ̂ (θ)x(2.2)

with x = (r cos θ, r sin θ) , ρ̂ (θ) = ρ (cos θ, sin θ) a periodic nonzero positive function
over [0, 2π]. This mapping Φ has differentiability problems at the origin (0, 0). To see
this, we need to find the derivatives of ρ̂(θ) with respect to x1 and x2. Use

θ = tan−1 (x2/x1) , x2 > 0, x1 6= 0

and an appropriate modification for points (x1, x2) in the lower half-plane. We find
the derivatives of ρ̂ using

∂ρ̂(θ)

∂x1
= ρ̂′(θ)

∂θ

∂x1
,

∂ρ̂(θ)

∂x2
= ρ̂′(θ)

∂θ

∂x2

Then

∂θ

∂x1
=
−x2

x21 + x22
,

∂θ

∂x2
=

x1
x21 + x22

Using these,

∂Φ

∂x1
=

(
ρ̂(θ)− x1x2

x21 + x22
ρ̂′(θ),

−x22
x21 + x22

ρ̂′(θ)

)
∂Φ

∂x2
=

(
x21

x21 + x22
ρ̂′(θ), ρ(θ) +

x1x2
x21 + x22

ρ̂′(θ)

)
The functions

x21
x21 + x22

,
x1x2
x21 + x22

,
x22

x21 + x22

are not continuous at the origin. This concludes our demonstration that the extension
Φ of (2.1) does not work when ρ̂′(θ) 6= 0.
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2.1. Harmonic mappings. As our first construction method for Φ, consider
the more general problem of extending to all of B2 a real or complex valued function
f defined on the boundary of B2. Expand f in a Fourier series,

(2.3) f(θ) =
1

2
a0 +

∞∑
n=1

an cos (nθ) + bn sin (nθ)

Define F on B2 using

(2.4) F (x) =
1

2
a0 +

∞∑
n=1

rn [an cos (nθ) + bn sin (nθ)]

with x = (r cos θ, r sin θ). Note that this is the solution to the Dirichlet problem for
Laplace’s equation on the unit disk, with the boundary data given by f(θ), 0 ≤ θ ≤ 2π.

It is straightforward to show that F is infinitely differentiable for |x| < 1, a
well-known result. In particular,

(2.5)
∂F

∂x1
= a1 +

∞∑
m=1

(m+ 1) rm [am+1 cosmθ + bm+1 sinmθ]

(2.6)
∂F

∂x2
= b1 +

∞∑
m=1

(m+ 1) rm [−am+1 sinmθ + bm+1 cosmθ]

Depending on the speed of convergence of (2.3), the partial derivatives of F (x) are
continuous over B2. In particular, if we have

∞∑
n=1

n |an| <∞,
∞∑
n=1

n |bn| <∞

then ∂F/∂x1 and ∂F/∂x2 are continuous over B2.
Given a boundary function

(2.7) ϕ(θ) = (ϕ1 (θ) , ϕ2 (θ)) , 0 ≤ θ ≤ 2π,

we can expand each component to all of B2 using the above construction in (2.4),
obtaining a function Φ defined on Bd into R2. A similar construction can be used
for higher dimensions using an expansion with spherical harmonics. It is unknown
whether the mapping Φ obtained in this way is a one-to-one mapping from B2 onto
Ω, even if Ω is convex.

The method can be implemented as follows.
• Truncate the Fourier series for each of the functions ϕk (θ), k = 1, 2, say to
trigonometric polynomials of degree n.

• Approximate the Fourier coeffi cients {aj} and {bj} for the truncated series.
• Define the extensions Φk (x) in analogy with (2.4).

Example 2.1. Choose

(2.8) ρ(θ) = a+ cos θ + 2 sin 2θ

with a chosen greater than the maximum of |cos θ + 2 sin 2θ| for 0 ≤ θ ≤ 2π, approx-
imately 2.2361. Note that ρ(θ) cos θ and ρ(θ) sin θ are trig polynomials of degree 3.
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Fig. 2.1. Starlike region with ρ̂ defined by (2.8) with a = 5
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Fig. 2.2. The Jacobian for (2.8) with 0.905 ≤ |det (DΦ (x))| ≤ 75.314

Begin by choosing a = 5. Choosing n = 3, we obtain the graphs in Figures 2.1 and
2.2. Figure 2.1 demonstrates the mapping by showing the images in Ω of the circles
r = j/p, j = 0, , . . . , p and the azimuthal lines θ = πj/p, j = 1, . . . , 2p, p = 15.
For the numerical evaluation of the Fourier coeffi cients, the trapezoidal rule with 10
nodes was used. Figure 2.2 shows |det (DΦ (x))| The figures illustrate that this Φ is a
satisfactory mapping. However, it is possible to improve on this mapping in the sense
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of reducing the ratio

(2.9) Λ (Φ) ≡
max
x∈B2

|det (DΦ (x))|

min
x∈B2

|det (DΦ (x))|

For the present case, Λ (Φ)
.
= 100.7. An iteration method for decreasing the size of

Λ (Φ) is discussed in §4. As a side-note, in the planar graphics throughout this paper
we label the axes over the unit disk as x and y, and over Ω, we label them as s and
t.

In contrast to this example, when choosing a = 3 in (2.8) the mapping Φ derived
in the same manner is neither one-to-one nor onto. Another method is needed to
generate a mapping Φ which satisfies (2.8), (1.2)-(1.4).

2.2. Using C∞-modification functions. Let (x, y) = (r cos θ, r sin θ), 0 ≤ r ≤
1. As earlier in (1.9), consider Ω as star-like with respect to the origin Introduce the
function

(2.10) T (r;κ) = exp

(
κ

(
1− 1

r

))
, 0 < r ≤ 1

with κ > 0 and T (0, κ) = 0. Define Φ by

(2.11) s = Φ (x;κ, ω) = [T (r;κ) ρ̂ (θ) + (1− T (r;κ))ω]x, x ∈ B2

with x = r (cos θ, sin θ), for 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, with some ω > 0. This is an
attempt to fix the lack of differentiability at (0,0) of the mapping (2.1)-(2.2). As r
decreases to 0, we have Φ (x) ≈ ωx. Thus the Jacobian of Φ is nonzero around (0, 0).
The constants κ, ω are to be used as additional design parameters.

The number ω should be chosen so as to also ensure the mapping Φ is 1-1 and
onto. Begin by finding a disk centered at (0, 0) that is entirely included in the open
set Ω, and say its radius is ω0, or define

ω0 = min
0≤θ≤2π

ρ̂ (θ)

Then choose ω ∈ (0, ω0). To see this is satisfactory, write

Φ (x;κ, ω) = f(r) (cos θ, sin θ)

f(r) = r [T (r;κ) ρ̂ (θ) + (1− T (r;κ))ω]

fixing θ ∈ [0, 2π]. Immediately, f (0) = 0, f (1) = ρ̂ (θ). By a straightforward compu-
tation,

f ′ (r) =
1

r
{T (r;κ) [(ρ̂− ω) (r + κ)] + rω}

where T = T (r;κ) and ρ̂ = ρ̂ (θ). The assumption 0 < ω < ω0 then implies

f ′ (r) > 0, 0 < r ≤ 1

Thus the mapping f : [0, 1] → [0, ρ̂ (θ)] is 1-1 and onto, and from this Φ : B2 → Ω is
1-1 and onto for the definition in (2.11).
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Fig. 2.3. Starlike Cassini region with ρ̂ defined in (2.12) with a = 1.5

This definition of Φ satisfies (1.2)-(1.4), but often leads to a large value for the
ratio Λ (Φ) of (2.9). It can be used as an initial choice for a Φ that can be improved
by the iteration method defined in §4.

Example 2.2. Consider the starlike region with

(2.12) ρ̂ (θ) =

√
cos (2θ) +

√
a− sin2 (2θ)

with a > 1. The region Ω is called an ‘oval of Cassini’. We give an example with
a = 1.5, (κ, ω) = (1.0, 0.5). Figure 2.3 is the analog of Figure 2.1. For the Jacobian,

min
r≤1

DΦ(x, y)
.
= 0.0625

max
r≤1

DΦ(x, y)
.
= 4.0766

The ratio Λ (Φ)
.
= 65.2 is large and can be made smaller; see Example 4.3.

A variation to (2.11) begins by finding a closed disk about the origin that is
contained wholly in the interior of Ω. Say the closed disk is of radius δ, 0 < δ < 1.
Then define

(2.13)

Φ (x;κ, ω)

=


x, 0 ≤ r ≤ δ[
T

(
r − δ
1− δ , κ

)
ρ (θ) +

(
1− T

(
r − δ
1− δ , κ

))]
x, δ < r ≤ 1,

where x = r (cos θ, sin θ). Then the Jacobian DΦ around the origin is simply the
identity matrix, and this ensures that detDΦ(x) 6= 0 for x ∈ Bd. Experimentation is
recommended on the use of either (2.11) or (2.13), including how to choose κ, ω, and
δ.
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The methods of this section generalize easily to the determination of an extension
Φ : B3

1−1−→
onto

Ω for the given boundary mapping

ϕ : ∂B3
1−1−→
onto

∂Ω

Examples of such are illustrated later in §5.

3. An integration-based mapping formula. Before giving a formal construc-
tion of an integration-based mapping Φ, we give some motivation. We present the
method for regions Ω ⊆ R2, although the method extends easily to regions in Rd,
d ≥ 2. Assume Ω is a convex region in R2. We need to define Φ (P ) for P ∈ B2,
|P | 6= 1. Take an arbitrary line through P and note its two points of intersection
with the boundary S1, calling them P+ and P− (defined more precisely below). Using
the values of ϕ (P+) and ϕ (P−), carry out linear interpolation of these based on the
distance of P from P+ and P−. Since all possible line directions are to be considered
as equally important, we average all such interpolatory values by considering all pos-
sible lines passing through P . This average is assigned as Φ (P ). Experimentally the
construction also works for many regions Ω that do not depart too much from being
convex.

Begin by considering a point P = r(cosα, sinα) ∈ B2, r ∈ [0, 1), α ∈ [0, 2π).
Given an angle α ≤ θ < π+α, draw a line L through P at an angle of θ with respect
to the positive x1-axis. Let P+(θ) and P−(θ) denote the intersection of this line with
the unit circle. These points will have the form

(3.1)
P+ (θ) = P + r+ (θ)η,
P− (θ) = P − r− (θ)η.

with

(3.2) η = (cos θ, sin θ) , α ≤ θ < π + α.

We choose r+ (θ) and r− (θ) to be such that

|P+(θ)| = |P + r+ (θ)η| = 1, |P−(θ)| = |P − r− (θ)η| = 1

and

r+ (θ) = |P − P+(θ)| , r− (θ) = |P − P−(θ)| .

Define

(3.3) ϕ∗ (θ) = ϕ (P+ (θ))− r+(θ)
ϕ (P+ (θ))− ϕ (P− (θ))

r+(θ) + r−(θ)

using linear interpolation along the line L. Here and in the following we always
identify the function ϕ on the boundary of the unit disk with a 2π periodic function
on the real number line. Then define

(3.4) Φ (P ) =
1

π

∫ α+π

α

ϕ∗ (θ) dθ

We study the construction and properties of Φ in the following two sections.
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3.1. Constructing Φ. The most important construction is the calculation of
P+ (θ) and P− (θ). We want to find two points γ that are the intersection of ∂B2
and the straight line L through P in the direction η, |η| = 1. Since P ∈ int (B2), we
have |P | < 1. We want to find

γ = P + sη, |γ| = 1

with η denoting the direction from P as noted earlier. With the assumption (3.2) on
η, we have

0 ≤ P · η ≤ |P | , α ≤ θ ≤ α+ 1
2π

0 ≤ −P · η ≤ |P | , α+ 1
2π ≤ θ ≤ α+ π

Using γ · γ = 1,

|P + rη|2 = P · P + 2sP · η + s2 = 1

s2 + 2sP · η + P · P − 1︸ ︷︷ ︸
<0

= 0

which implies the roots are real and nonzero. Thus the formula

r± = −η · P ±
√

(P · η)
2

+ 1− P · P

= r cos(θ − α)±
√

1− r2 sin2(θ − α)

defines two real roots. Here we see that

|P · η| ≤ |P |
(P · η)

2 − P · P ≤ 0

(P · η)
2

+ 1− P · P ≤ 1

So

r− = P · η +

√
(P · η)

2
+ 1− P · P

= r cos(θ − α) +

√
1− r2 sin2(θ − α)

r+ = −P · η +

√
(P · η)

2
+ 1− P · P

= −r cos(θ − α) +

√
1− r2 sin2(θ − α)

It is immediate that

r− + r+ = 2

√
(P · η)

2
+ 1− P · P

= 2

√
1− r2 sin2(θ − α)

and therefore the denominator in the formula (3.3) for ϕ∗ (θ) is zero if and only if
|P | = 1 and P ⊥ η, a case not allowed in our construction.

Using r− and r+ in (3.1), we can construct ϕ∗ (θ) using (3.3), and this is then
used in obtaining the mapping Φ (P ) of (3.4). This formula is approximated using
numerical integration with the trapezoidal rule. We illustrate this later in the section.
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To further simplify the analysis of the mapping Φ of (3.4), we assume for a
moment that α = 0, so the point P is located on the positive x—axis. Our next goal is
to determine the respective angles between P+(θ) and P−(θ) and the positive x-axis.
We denote these angles by ψ+ and ψ−, respectively. Using the law of cosines in the
triangle given by the origin, P , and P+ we obtain

(r+)2 = r2 + 1− 2r cos(ψ+)

2r cos(ψ+) = r2 + 1− (r+)2

= r2 + 1−
(
−r cos(θ) +

√
1− r2 sin2 θ

)2
= 2r2 sin2 θ + 2r cos(θ)

√
1− r2 sin2 θ

which implies

(3.5) ψ+ = ψ+(r, θ) = arccos
(
r sin2 θ + cos(θ)

√
1− r2 sin2 θ

)

where we use the function arccos : [−1, 1] 7→ [0, π]. Similarly we get

(3.6) ψ− ≡ ψ−(r, θ) = ãrccos
(
r sin2 θ − cos(θ)

√
1− r2 sin2 θ

)

where we use the function ãrccos : [−1, 1] 7→ [π, 2π],

ãrccos(x) = 2π − arccos(x)

Using the functions ψ− and ψ+ we can rewrite ϕ∗(θ), see (3.3), in the following way:

ϕ∗(r, θ) =
1

2

(
1 +

r cos(θ)√
1− r2 sin2 θ

)
ϕ(ψ+(r, θ))

+
1

2

(
1− r cos(θ)√

1− r2 sin2 θ

)
ϕ(ψ−(r, θ))
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This allows us to write formula (3.4) more explicitly in the following way:

Φ(P ) =
1

2π

∫ π

0

(
1 +

r cos(θ)√
1− r2 sin2 θ

)
ϕ(ψ+(r, θ))dθ

+
1

2π

∫ π

0

(
1− r cos(θ)√

1− r2 sin2 θ

)
ϕ(ψ−(r, θ))dθ

=
1

2π

∫ π

0

(
1 +

r cos(θ)√
1− r2 sin2 θ

)
ϕ(ψ+(r, θ))dθ

+
1

2π

∫ 2π

π

1− r cos(θ − π)√
1− r2 sin2(θ − π)

ϕ(ψ−(r, θ − π))dθ

=
1

2π

∫ π

0

(
1 +

r cos(θ)√
1− r2 sin2 θ

)
ϕ(ψ+(r, θ))dθ

+
1

2π

∫ 2π

π

(
1 +

r cos(θ)√
1− r2 sin2 θ

)
ϕ(ψ−(r, θ − π))dθ

=
1

2π

∫ 2π

0

(
1 +

r cos(θ)√
1− r2 sin2 θ

)
ϕ(ψ∗(r, θ))dθ(3.7)

Here we used the variable transformation θ 7→ π + θ for the second equality and the
new definition

(3.8) ψ∗(r, θ) :=

{
ψ+(r, θ), 0 ≤ θ ≤ π

ψ−(r, θ − π), π < θ ≤ 2π

where the functions ψ− and ψ+ are defined in (3.5) and (3.6). We remark, that the
function ψ∗ : [0, 1) × [0, 2π] 7→ [0, 2π] is a continuous function which follows from its
geometric construction. We further define

(3.9) k(r, θ) := 1 +
r cos(θ)√

1− r2 sin2 θ

a 2π periodic continuous function on [0, 1)× [0, 2π]. If we now go back to the general
case P = r(cos(α), sin(α)), α ∈ [0, 2π), we can rotate the given boundary function ϕ
and obtain

(3.10) (Eϕ)(P ) ≡ Φ(P ) =
1

2π

∫ 2π

0

k(r, θ)ϕ(ψ∗(r, θ) + α)dθ

Before we study the properties of the extension operator E , we present two numerical
examples.

To obtain Φ (P ), we apply the trapezoidal rule to approximate the integral in
(3.10) or (3.4). The number of integration nodes should be chosen suffi ciently large,
although experimentation is needed to determine an adequate choice.

Example 3.1. Consider

(3.11) ϕ (cos θ, sin θ) =
(
cos θ − sin θ + a cos2 θ, cos θ + sin θ

)
, 0 ≤ θ ≤ 2π
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Fig. 3.1. The mapping Φ for boundary (3.11) with a = 0.9
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Fig. 3.2. The mapping Φ for boundary (2.12) with a = 1.5

with 0 < a < 1. We choose a = 0.9 and apply the above with n = 100 subdivisions for
the trapezoidal rule to evaluate (3.4). Figure 3.1 shows the mapping Φ, done in the
same manner as earlier with Figures 2.1 and 2.3.

Example 3.2. We consider again the ovals of Cassini region with boundary given
in (2.12) with a = 1.5. The mapping (3.4) is illustrated in Figure 3.2. However, for a
somewhat closer to 1, this integration formula (3.4) no longer produces a satisfactory
Φ.
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3.2. Properties of Eϕ. To study the properties of the extension operator E , see
(3.10), we have to study the behavior of the functions ψ∗ and k, see (3.8) and (3.9),
at the boundary r = 1. We start with the function ψ∗ and define the values of this
function for r = 1 first:

(3.12) ψ∗(1, θ) :=


0, 0 ≤ θ ≤ 1

2π

2θ − π, 1
2π ≤ θ ≤

3
2π

2π, 3
2π ≤ θ ≤ 2π

Because of

lim
r→1

1− r2 = 0

and the boundedness of the sine function, the limit

lim
r→1

1− r2 sin2(θ) = 1− sin2(θ),

is uniform for θ ∈
[
0, 12π

]
. The uniform continuity of the square root function implies

that

lim
r→1−

(
cos(θ)

√
1− r2 sin2 θ

)
= cos(θ)

√
1− sin2 θ

= cos2 θ

uniformly for θ ∈
[
0, 12π

]
. Together with similar arguments for the function r sin2 θ

we get

lim
r→1−

(
r sin2 θ + cos(θ)

√
1− r2 sin2 θ

)
= sin2 θ + cos2 θ = 1

uniformly in θ. Finally we use the uniform continuity of arccos(·) to conclude that

lim
r→1−

ψ∗(r, θ) = lim
r→1−

arccos
(
r sin2 θ + cos(θ)

√
1− r2 sin2 θ

)
= arccos(1)

= 0 := ψ∗(1, θ)

converges uniformly on
[
0, 12π

]
. Because√

1− sin2(θ) = − cos(θ), θ ∈
[
1
2π, π

]
,

we see in a similar way that

lim
r→1−

ψ∗(r, θ) = lim
r→1−

arccos
(
r sin2 θ + cos(θ)

√
1− r2 sin2 θ

)
= arccos(sin2 θ + cos(θ)(− cos(θ)))

= arccos(− cos(2θ))

= arccos(cos(2θ − π))

= 2θ − π
= ψ∗(1, θ)
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uniformly for θ ∈
[
1
2π, π

]
. Similar arguments apply for θ ∈ [π, 2π] and we finally

conclude that ψ∗(r, θ) converges uniformly to ψ∗(1, θ) as r approaches 1. This proves
the next lemma.

Lemma 3.3. The function ψ∗, defined by (3.8) and (3.12), is continuous on
[0, 1]× [0, 2π].

We remark that continuity on a closed interval implies uniform continuity.
Now we turn to the function k defined in (3.9). Here we define k for the value

r = 1 in the following way

(3.13) k(1, θ) :=


2, 0 ≤ θ < 1

2π

0, 1
2π ≤ θ ≤

3
2π

2, 3
2π < θ ≤ 2π

Obviously k(1, ·) cannot be the uniform limit of k(r, ·) as r approaches 1, but the
following lemma holds.

Lemma 3.4. The function k : [0, 1]× [0, 2π] 7→ [0, 2], defined by (3.9) and (3.13),
is bounded; and for every δ > 0, the function k(r, θ) approaches k(1, θ) uniformly on
Iδ as r approaches 1. Here

Iδ := [0, 2π] \
{(

1
2π − δ,

1
2π + δ

)
∪
(
3
2π − δ,

3
2π + δ

)}
Proof. That k is bounded by 2 follows from√

1− r2 sin2 θ ≥
√

1− sin2 θ = | cos(θ)|

and the fact that r ∈ [0, 1]. The function 1/
√
z is uniformly continuous on ε ≤ z ≤ 1

for every ε > 0. From the proof of Lemma 3.3 we know that

lim
r→1−

1− r2 sin2 θ = cos2 θ

uniformly for θ ∈ [0, 2π]. Together with the uniform continuity of 1/
√
z on [cos2( 12π−

δ), 1], this shows

lim
r→1−

1 +
r cos(θ)√

1− r2 sin2 θ
= 1 +

cos(θ)

| cos(θ)|

uniformly on Iδ. Remembering

| cos(θ)| =
{

cos(θ), θ ∈
[
0, 12π

]
∪
[
3
2π, 2π

]
− cos(θ), θ ∈

[
1
2π,

3
2π
]

proves the Lemma.

Motivated by the properties of ψ∗ and k we now prove a more general result for
integral operators of the form (3.10).

Lemma 3.5. Let k1, k2 : [0, 1] × [0, 2π] 7→ R be bounded functions which are
continuous on [0, 1)× [0, 2π]. Assume there is a finite set E = {θ1, . . . , θn} such that

lim
r→1−

ki(r, θ) = ki(1, θ), i = 1, 2,

14



uniformly on Iδ := {θ ∈ [0, 2π] | |θ − θj | ≥ δ, j = 1, . . . , n} for every δ > 0. Then for
a periodic continuous function ϕ : [0, 2π] 7→ R the function

Φ(r, α) :=

∫ 2π

0

k1(r, θ)ϕ(k2(r, θ) + α) dθ

is continuous on [0, 1]× [0, 2π] and 2π periodic in α.
Remark 3.6. The above lemma will apply to each component of the function

Eϕ defined in (3.10) with k1 = k and k2 = ψ∗ and E = { 12π,
3
2π}. This shows the

continuity of Eϕ.
Proof. The uniform convergence on Iδ, δ > 0 arbitrary, shows that ki(1, ·), i = 1, 2,

are piecewise continuous and bounded functions on [0, 2π], so all integrals exist. The
continuity of Φ(r, α) on [0, 1)×[0, 2π] follows easily from the continuity of the functions
ki, i = 1, 2. The periodicity follows from the periodicity of ϕ and the definition of
Φ. So we only need to show the continuity of Φ(r, α) on {1} × [0, 2π] for example
at (1, α). Because of the periodicity of Φ(r, ·) and the property (Eϕ)(α) = (Eϕα)(0),
where ϕα(θ) = ϕ(α + θ) we only need to prove the continuity for one value of α, for
example α = π. We estimate

|Φ(r, α)− Φ(1, π)| =
∣∣∣∣∫ 2π

0

k1(r, θ)ϕ(k2(r, θ) + α)− k1(1, θ)ϕ(k2(1, θ) + π) dθ

∣∣∣∣
≤
∣∣∣∣∫ 2π

0

k1(r, θ)(ϕ(k2(r, θ) + α)− ϕ(k2(1, θ) + π)) dθ

∣∣∣∣
+

∣∣∣∣∫ 2π

0

(k1(r, θ)− k1(1, θ))ϕ(k2(1, θ) + π)) dθ

∣∣∣∣
Now we know that k1, k2, and ϕ are bounded functions, for example

|k1(r, θ)|, |k2(r, θ)|, |ϕ(θ)| ≤M, M > 0

for all (r, θ) ∈ [0, 1]× [0, 2π]. So we only have to show

(3.14) lim
(r,α)→(1,π)

∫ 2π

0

|ϕ(k2(r, θ) + α)− ϕ(k2(1, θ) + π)| dθ = 0

and

(3.15) lim
(r,α)→(1,π)

∫ 2π

0

|k1(r, θ)− k1(1, θ)| dθ = 0

We start with the first limit. Given an ε > 0 we choose δ > 0 small enough such that

(3.16)
∫
[0,2π]\Iδ

2M dθ =
ε

2

Now we observe that ϕ is uniformly continuous on R because it is continuous and
periodic. So there is a ω > 0 such that

(3.17) |ϕ(x)− ϕ(y)| ≤ ε

4π

if |x − y| ≤ ω. We also know that k2(r, ·) converges uniformly on Iδ to k2(1, ·), so
there is a r0 ∈ (0, 1), such that

|k2(r, θ)− k2(1, θ)| ≤
ω

2
15



for all r ≥ r0 and θ ∈ Iδ. If furthermore |α− π| ≤ ω/2, we conclude that

|(k2(r, θ) + α)− (k2(1, θ) + π)| ≤ |k2(r, θ)− k1(1, θ)|+ |α− π|
≤ ω

which by (3.17) implies

(3.18) |ϕ(k2(r, θ) + α)− ϕ(k2(1, θ) + π)| ≤ ε

4π

for all (r, α) ∈ [r0, 1]× [π−ω/2, π+ω/2] and θ ∈ Iδ. Combining (3.16) and (3.18) we
can estimate ∫ 2π

0

|ϕ(k2(r, θ) + α)− ϕ(k2(1, θ) + π)| dθ

≤
∫
[0,2π]\Iδ

|ϕ(k2(r, θ) + α)− ϕ(k2(1, θ) + π)| dθ

+

∫
Iδ

|ϕ(k2(r, θ) + α)− ϕ(k2(1, θ) + π)| dθ

≤
∫
[0,2π]\Iδ

2M dθ +

∫
Iδ

ε

4π
dθ

≤ ε

2
+ 2π · ε

4π
= ε

for all (r, α) ∈ [r0, 1]× [π − ω/2, π + ω/2],which proves (3.14).
To prove (3.15) we again choose an arbitrary ε > 0 and choose δ > 0 such that

(3.16) is true. Now the uniform convergence of k1(r, ·) to k1(1, ·) on Iδ proves the
existence of a r1 ∈ (0, 1) such that

(3.19) |k1(r, θ)− k1(1, θ)| ≤
ε

4π

for all (r, θ) ∈ [r1, 1]× Iδ. Using (3.16) and (3.19) we estimate∫ 2π

0

|k1(r, θ)− k1(1, θ)| dθ =

∫
[0,2π]\Iδ

|k1(r, θ)− k1(1, θ)| dθ

+

∫
Iδ

|k1(r, θ)− k1(1, θ)| dθ

≤
∫
[0,2π]\Iδ

2M dθ +

∫
Iδ

ε

4π
dθ

≤ ε

2
+ 2π · ε

4π
= ε

for all r ∈ [r1, 1]. This proves (3.15).

Now we state the results about the extension operator E .
Theorem 3.7. Let ϕ : ∂B2 7→ R2, be a continuous function, then Φ(P ) =

(Eϕ)(r, α), P ∈ B2, see (3.10), is continuous function on B2 and

Φ|∂B2
= ϕ(3.20)
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Proof. In Lemma 3.3 and Lemma 3.4 we have shown that the functions k and
ψ∗ in (3.10) satisfy the assumptions of Lemma 3.5. So the continuity of Φ(P ) follows
from Lemma 3.5. For P ∈ ∂B2 the polar coordinates of P are given by (r, α) = (1, α),
α ∈ [0, 2π], so we get with (3.12) and (3.13)

Φ(P ) =
1

2π

∫ 2π

0

k(1, θ)ϕ(ψ∗(1, θ) + α) dθ

=
1

2π

(∫ π/2

0

2ϕ(0 + α) dθ +

∫ 2π

3π/2

2ϕ(2π + α) dθ

)

=
1

2π
(πϕ(α) + πϕ(2π + α))

= ϕ(α) = ϕ(P )

because of the 2π periodicity of ϕ.

Corollary 3.8. Let Ω ⊂ R2 be a domain with boundary ∂Ω and ϕ : ∂B2 7→ ∂Ω
be a continuous parametrization of the boundary. Then the function Eϕ, defined in
(3.10), maps B2 onto Ω.

Proof. Theorem 3.7 implies that Eϕ : B2 7→ R2 is continuous and (Eϕ)(∂B2) =
∂Ω. We assume that the parametrization ϕ moves along the boundary of Ω in the
positive direction. For y ∈ Ω we then have

deg(Eϕ, y) = 1

where deg is the mapping degree; see [12, Chapter 12]. But this implies that there is
at least one x ∈ B2 such that (Eϕ)(x) = y.

Theorem 3.9. Let Ω ⊂ R2 be a convex domain with boundary ∂Ω and ϕ : ∂B2 7→
∂Ω be a continuous parametrization of the boundary. Then (Eϕ)(B2) ⊂ Ω.

Proof. We have to show (Eϕ)(P ) ∈ Ω for every P ∈ B2. We use the first equation
in formula (3.7)

Φ(P ) =
1

2π

∫ π

0

1 +
r cos(θ)√

1− r2 sin2(θ)

ϕ(ψ+(r, θ))

+

1− r cos(θ)√
1− r2 sin2(θ)

ϕ(ψ−(r, θ)) dθ

= lim
N→∞

1

N

N∑
j=0

1

2
+

r cos(θj)

2
√

1− r2 sin2(θj)

ϕ(ψ+(r, θj))

+

1

2
− r cos(θj)

2
√

1− r2 sin2(θj)

ϕ(ψ−(r, θj))

where θj = πj/N and we further assumed again that P is on the positive real axis
to simplify the notation. Here we have used the fact that the integral is the limit of
Riemann sums. Each term of the sum is a convex combination of two elements of
Ω and therefore in Ω. But the sum itself is a convex combination, so the sum is an
element of Ω. Finally Ω is closed, so Φ(P ) ∈ Ω.

17



The two last results imply that for a convex domain Ω we get (Eϕ)(B2) = Ω, but
there is still the possibility that E(ϕ) is not injective. Our numerical examples seem
to indicate that the function is injective for convex Ω, but we have no proof. For
non-convex regions, it works for some but not others. It is another option in a toolkit
of methods for producing the mapping Φ.

The integration-based formula (3.4) can be extended to three dimensions. Given

ϕ : ∂B3
1−1−→
onto

∂Ω,

define the interpolation formula ϕ∗ (θ, ω) as before in (3.3), with (θ, ω) the spherical
coordinates of a direction vector η through a given point P ∈ B3. Then define

(3.21) Φ (P ) =
1

2π

∫ 2π

0

∫ π/2

0

ϕ∗ (θ, ω) sinω dω dθ

A proof of the generalization of Corollary 3.8 can be given along the same line as
given above for the disk B2.

4. Iteration methods. Some of the methods discussed in §2 lead to a mapping
Φ in which det (DΦ (x)) has a large variation as x ranges over the unit ball Bd,
especially those methods based on using the C∞-function T (r, κ) of (2.11). We seek
a way to improve on such a mapping, to obtain a mapping in which det (DΦ (x))
has a smaller variation over Bd. We continue to look at only the planar problem,
while keeping in mind the need for a method that generalizes to higher dimensions.
In this section we introduce an iteration method to produce a mapping Φ with each
component a multivariate polynomial over B2.

Assume we have an initial guess for our mapping, in the form of a polynomial of
degree n,

(4.1) Φ(0)n (x) ≡
Nn∑
j=1

α
(0)
j ψj(x), x ∈ B2

We want to calculate an ‘improved’value for Φ
(0)
n , call it Φn.

The coeffi cients α(0)j ∈ R2. The functions
{
ψ1, . . . , ψNn

}
are chosen to be a basis

for Πn, the polynomials of degree ≤ n. and we require them to be orthonormal
with respect to the inner product (·, ·) associated with L2 (B2). Note that Nn =
dim (Πn) = 1

2 (n+ 1) (n+ 2). As basis functions
{
ψj
}
in our numerical examples,

we use the ‘ridge polynomials’of Logan and Shepp [8], an easy basis to define and
calculate; also see [3, §4.3.1].

We use an iterative procedure to seek an approximation

(4.2) Φn (x) =

Nn∑
j=1

αn,jψj(x)

of degree n that is an improvement in some sense on Φ
(0)
n . The degree n used in

defining Φ
(0)
n , and also in defining our improved value Φn, will need to be suffi ciently

large; and usually, n must be determined experimentally.

The coeffi cients
{
α
(0)
j

}
are normally generated by numerical integration of the

Fourier coeffi cients
{
α
(0)
j

}
,

(4.3) α
(0)
j =

(
Φ̃, ψj

)
,
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where Φ̃ is generated by one of the methods discussed in §§2,3. The quadrature used
is

(4.4)
∫
B2

g(x, y) dx dy ≈ 2π

2p+ 1

p∑
l=0

2p∑
m=0

ωlrlĝ

(
rl,

2πm

2p+ 1

)
where ĝ (r, θ) ≡ g (r cos θ, r sin θ). Here the numbers {ωl} are the weights of the
(p+ 1)-point Gauss-Legendre quadrature formula on [0, 1], and the nodes {rl} are the
corresponding zeros of the degree p+ 1 Legendre polynomial on [0, 1]. This formula
is exact if g is a polynomial of degree ≤ 2p+ 1; see [10, §2.6].

We need to require that our mapping will agree with ϕ on S1, at least approxi-
mately. To this end, choose a formula qn for the number of points on S1 at which
to match Φn with the function ϕ and then choose {z1, . . . , zqn} on S1. Require Φn to
satisfy

(4.5) Φn (zj) = ϕ (zj) , j = 1, . . . , qn

which imposes implicitly qn conditions on the coeffi cients {αn,j}. If ϕ is a trigono-
metric polynomial of degree m, and if n ≥ m with qn = 2n+ 1, then (4.5) will imply
that Φn|S1 = ϕ over ∂Ω. Our numerical examples all use this latter choice of qn.

Next, choose a function F (α), α = [α1, . . . , αNn ]
T , and seek to calculate α so as

to minimize F(α) subject to the above constraints (4.5). How should F be chosen?
To date, the most successful choice experimentally has been F (α) = Λ (Φn) , defined
earlier in (2.9).

4.1. The iteration algorithm. Using the constraints (4.5) leads to the system

(4.6) Aα = ϕ,

A =

 ψ1(z1) · · · ψNn(z1)
...

...
ψ1(zqn) · · · ψNn(zqn)

 , ϕ =

 ϕ(z1)
...

ϕ(zqn)


Because Φn|S1 is a trigonometric polynomial of degree n, it is a bad idea to have
qn > 2n + 1. The maximum row rank of A can be at most 2n + 1. Let {z1, . . . , zq}
denote qn evenly spaced points on S1. We want to minimize F (α) subject to the
constraints (4.6).

We turn our constrained minimization problem into an unconstrained problem.
Let A = UCV be the singular value decomposition of A; U is an orthogonal matrix
of order q, V is an orthogonal matrix of order N ≡ Nn, and C is a ‘diagonal matrix’
of order q ×N . The constraints (4.6) can be written as

(4.7) CV α = UTϕ

Introduce a new variable β = V α, or α = V Tβ. Then Cβ = UTϕ and we can solve
explicitly for γ = [β1, . . . , βq]

T . Implicitly this assumes that A has full rank. Let

δ = [βq+1, . . . , βN ]T , β =
[
γT , δT

]T
. Then introduce

(4.8) G (δ) = F (α)
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Fig. 4.1. The initial mapping Φ̃ for Example 4.1 with a = 5, based on (2.11)
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Fig. 4.2. The mapping Φ for Example 4.1 with a = 5, obtained using iteration

using α = V Tβ and the known values of γ. We use our initial
{
α
(0)
j

}
in (4.1) to

generate the initial value for β and thus for δ.
The drawback to this iteration method is the needed storage for the q×N matrix

A and the matrices produced in its singular value decomposition. In the following
numerical examples, we minimize G using the Matlab program fminunc for uncon-
strained minimization problems.

Example 4.1. Recall Example 2.1 with a = 5. Generate an initial mapping
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Fig. 4.3. The boundary for the starlike region with ρ = 3 + cos θ + 2 sin 2θ

Φ̃ using (2.11) with κ = .5, ω = 1.0. Next, generate an initial polynomial (4.1) of

degree n = 3, using numerical integration of the Fourier coeffi cients
{
α
(0)
j

}
of (4.3).

We then use the above iteration method to obtain an improved mapping. Figure 4.1
shows the initial mapping Φ̃, and Figure 4.2 shows the final mapping Φn obtained by
the iteration method. With the final mapping, we have Φn|S1 = ϕ to double precision
rounding accuracy, and

Λ (Φ)
.
= 6.21

Compare the latter to Λ (Φ)
.
= 100.7 for the mapping in Example 2.1.

Example 4.2. Consider again the starlike region using (2.8) of Example 2.1, but
now with a = 3. The harmonic mapping of §2.1 failed in this case to produce a 1-1
mapping. In fact, the boundary is quite ill-behaved in the neighborhood of (−0.2, 0.2),
being almost a corner; see Figure 4.3. In this case we needed n = 7, with this smallest
suffi cient degree determined experimentally. To generate the initial guess Φ̃, we used

(2.11) with (κ, ω) = (0.5, 0.1). For the initial guess, Λ
(

Φ
(0)
7

)
.
= 840. We iterated

first with the Matlab program fminunc. When it appeared to converge, we used the
resulting minimizer as an initial guess with a call to the Matlab routine fminsearch,
which is a Nelder-Mead search method. When it converged, its minimizer was used
again as an initial guess, returning to a call on fminunc. Figure 4.4 shows the final
mapping Φ7 obtained with this repeated iteration. For the Jacobian matrix, Λ (Φ7)

.
=

177.9, further illustrating the ill-behaviour associated with this boundary. As before,
Φ|S1 = ϕ to double precision rounding accuracy.

Example 4.3. Consider again the ovals of Cassini region with boundary given in
(2.12) with a = 1.5. As our initial mapping Φ̃, we use the interpolating integration-
based mapping of (3.4), illustrated in Figure 3.2. We produce the initial guess for the

coeffi cients
{
α
(0)
j

}
of (4.3) by using numerical integration. Unlike the preceding three

examples, the boundary mapping ϕ is not a trigonometric polynomial, and thus the
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Fig. 4.4. The boundary mapping Φ for the starlike regionwith ρ = 3 + cos θ + 2 sin 2θ

interpolating conditions of (4.5) will not force Φn|S1 to equal ϕ over ∂Ω. For that
reason, we use a higher degree than with the preceding examples, choosing n = 16.
Figure 4.5 shows the resulting mapping Φ. With this mapping, Λ (Φ) = 26.11. On the
boundary,

max
x∈S1

|Φ (x)− ϕ (x)| .= 2.61E − 4

showing the mapping does not depart far from the region Ω.
Example 4.4. Consider the starlike domain with

ρ̂ (θ) = 5 + sin θ + sin 3θ − cos 5θ, 0 ≤ θ ≤ 2π.

in (2.1)-(2.2). Using the degree n = 7 and the inital mapping Φ̃ based on (2.11) with
(κ, ω) = (0.2, 1.4), we obtained the mapping illustrated in Figure 4.6. The minimum
value obtained was Λ (Φ7)

.
= 6.63. As a side-note of interest, the iteration converged

to a value of Λ (Φ) that varied with the initial choice of (κ, ω). We have no explanation
for this, other than to say that the objective function Λ (Φ) appears to be ill-behaved
in some sense that we do not yet understand.

4.2. An energy method. In this section we present a second iteration method,
one based on a different objective function. Instead of Λ, see (2.9), we use

Λ̃(Φn) ≡
K1∑
i=1

K1∑
j=1
i6=j

1

‖Φn(ξi)− Φn(ξj)‖α2

+

K1∑
i=1

L1∑
j=1

1

‖Φn(ξi)− Φn(ζj)‖α2
.(4.9)
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Fig. 4.5. The boundary mapping Φ for the starlike region with ρ from (2.12) with a = 1.5
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Fig. 4.6. The optimal mapping Φ7 for the starlike region with ρ̂ (θ) = 5 + sin θ + sin 3θ − cos 5θ

We again impose the interpolation conditions given in (4.5); and the free parameters
are given by δ, see (4.8). First we explain the definition of the points ξi and ζj
appearing in formula (4.9). The points ξi are located inside the unit disk and are
elements of a rectangular grid

{ξi | i = 1, . . . ,K1} =

(
1

k1
Z2
)
∩B2;
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the density of the grid is determined by k1 > 0. The points ζj are located on the unit
circle and distributed uniformly

{ζj | j = 1, . . . , L1} =

{(
cos

(
2πj

L1

)
, sin

(
2πj

L1

))
| j = 1, . . . , L1

}
L1 ∈ N. Furthermore the function Λ̃ contains the parameter α > 0. So in addition
to the dimension n of the trial space for Φn, this method uses four parameters: qn,
the number of interpolation points along the boundary; k1, which determines the grid
density inside the unit disk; L1, the number of points along the boundary; and α, the
exponent in formula (4.9).

The motivation for the function Λ̃ is the following. We start with an equally
distributed set of points in the unit disk, {ξi | i = 1, . . . ,K1} and we try to force the
mapping Φn to distribute these points as uniformly as possible in the new domain
Ω. One can think of charged particles which repel each other with a certain force.
If this force is generated by the potential r−α then the first term in formula (4.9) is
proportional to the energy of the charge distribution {Φn(ξi) | i = 1, . . . ,K1}. When
we go back to our original goal of creating a mapping Φ which is injective, we see that
this is included in this functional because the energy becomes infinite if two particles
are moved closer.

The second goal for our mapping is that Φn(B2) ⊂ Ω, to enforce this condition we
use a particle distribution along the boundary of Ω given by {Φn(ζj) | j = 1, . . . , L1}.
These charges will repel the charges {Φn(ξi) | i = 1, . . . ,K1} away from the bound-
ary. The energy associated with the interaction between the interior points and the
boundary points gives us the second term in formula (4.9).

So we can consider the algorithm to minimize the function Λ̃ as an attempt to
minimize the energy of a particle distribution in Ω. This should also guarantee that
the mapping Φn has a small value for the function Λ, because the original points
{ξi | i = 1, . . . ,K1} are equally distributed.

In our numerical experiments we used α = 2, so the function Λ̃(Φn) is differen-
tiable as a function of the parameters δ. Furthermore we adjust k1 ∈ N in such a way
that K1 ≈ Nn and we choose L1 ∼ k1. For the parameter qn we use the same value
as in §4.1.

Example 4.5. Consider the starlike domain defined in (2.8) with a = 5 again.
We use n = 3, α = 2, K1 = 177, L1 = 160. To minimize the function Λ̃ we use the
BFGS method, see [9]. Figures 4.7 and 4.8 show a rectangular grid in the unit disc
and its image under the mapping Φ

(0)
3 . For the initial guess we have Λ̃(Φ

(0)
3 ) ≈ 11500

and Λ(Φ
(0)
3 ) ≈ 29. For the final mapping Φ3 we obtain Λ̃(Φ3) ≈ 7930 and Λ(Φ3) ≈ 10.

This shows that the function Λ̃ implicitly also minimizes the function Λ. Figure 4.9
shows the image of the final mapping Φ.

5. Mapping in three dimensions. In this section we describe an algorithm to
construct an extension Φn : B3 7→ Ω for a given function ϕ : S2 7→ ∂Ω. We assume
that Ω is starlike with respect to the origin. The three dimensional case differs from
the algorithm described in §4 in several ways. The dimension of Πn of the polynomials
of maximal degree n is given by Nn =

(
n
3

)
, so any optimization algorithm has to deal

with a larger number of degrees of freedom for a given n when compared to the two
dimensional case. Whereas in the two dimensional case a plot of Φn(B2) reveals any
problems of the constructed Φn with respect to injectivity or Φn(B2) ⊂ Ω a similar
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Fig. 4.7. A grid on the unit disk
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Fig. 4.8. The image of the grid in Figure 4.7 under the mapping Φ
(0)
3 for the domain given in

(2.8).

plot of Φn(B3) is not possible. For this reason, at the end of each optimization we
calculate two measures which help us to decide if the constructed Φn is injective and
into.

On the other hand the principal approach to constructing Φn is very similar to
the algorithm described in §4. Again we are looking for a function Φn given in the
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Fig. 4.9. The image of the grid in Figure 4.7 under the final mapping Φ3.

following form

Φn(x) =

Nn∑
j=1

αn,jψj(x), x ∈ B3,

where {ψ1, . . . , ψNn} is an orthonormal basis of Πn and the vectors αn,j ∈ R3, j =
1, . . . , Nn are determined by an optimization algorithm.

For a given n ∈ N we use the extremal points of Womersley, see [11], on the sphere
S2. We will denote these points by Wn = {z(n)1 , . . . , z

(n)
(n+1)2}. These points guarantee

that the smallest singular value of the interpolation matrix

An :=:


ψ1(z

(n)
1 ) . . . ψNn(z

(n)
1 )

...
...

ψ1(z
(n)
(n+1)2) . . . ψNn(z

(n)
(n+1)2)


stays above 1 for all n which we have used for our numerical examples. The number
(n+1)2 is also the largest possible number of interpolation points on the sphere which
we can use, because dim(Πn|S2) = (n+ 1)2, see [3, Corollary 2.20 and formula (2.9)].
Again we enforce

Φn(z
(n)
j ) = ϕ(z

(n)
j ), j = 1, . . . , (n+ 1)2,

for the mapping function Φn; see also (4.6). To define the initial function

(5.1) Φ(0)n (x) =

Nn∑
j=1

α
(0)
n,jψj(x), x ∈ B3,
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we choose

(5.2) α
(0)
n,j = (Φ̃, ψj)B3

, j = 1 . . . , Nn.

(·, ·)B3
is the usual L2 inner product on B3. The polynomial Φ

(0)
n is the orthogonal

projection of Φ̃ into Πn. The function Φ̃ is some continuous extension of ϕ to B3,
obtained by the generalization to three dimensions of one of the methods discussed
in §§2,3. Having determined Φ(0)n , we convert the constrained optimization of the
objective function Λ(·) into an unconstrained minimization, as discussed earlier in
(4.6)-(4.8).

Once the Matlab program fminunc returns a local minimum for Λ (Φn) and an
associated minimizer Φn, we need to determine if Φn satisfies

Φn(x) 6= Φn(y), x, y ∈ B3, x 6= y, (injective)(5.3)

Φn(B3) ⊂ Ω, (into)(5.4)

For this reason we calculate two measures of our mapping Φn.
Given K ∈ N we define a grid on the unit sphere,

S2K :=

{(
sin

(
πj

K

)
cos

(
iπ

K

)
, sin

(
πj

K

)
sin

(
iπ

K

)
, cos

(
πj

K

))
|

j = 0, . . . ,K, i = 0, . . . , 2K − 1 } .

For L ∈ N, we define a cubic grid in B3,

B3,L :=

(
1

L
Z3
)
∩B3

so every element in B3,L is given by

1
L (i, j, k), i, j, k ∈ Z,
i2 + j2 + k2 ≤ L2.

To measure the minimum of the magnitude of the gradient of ϕ over S2, we define an
approximation by

mK(ϕ) := min
x,y∈S2K
x 6=y

‖ϕ(x)− ϕ(y)‖
‖x− y‖

This number is used to calculate

E1,K(Φn) := min
x,y∈B3,L,
x6=y

‖Φn(x)−Φn(y)‖
‖x− y‖

/
mK(ϕ)

Because of Φn|S2 ≈ ϕ we expect E1,K ≤ 1. We use the occurrence of a very small
value for E1,K(Φn) to indicate that (5.3) may be violated. The result E1,K(Φn) ≈ 1
is the best we can achieve, for example, with ϕ and Φn the identity mapping.

If (5.4) is violated there is a point x ∈ B3 and a point y ∈ S2 with Φn(x) = ϕ(y).
This shows that the following measure would be close to zero

E2,K,L(Φn) := min
x∈B3,L, y∈S2K

‖Φn(x)− ϕ(y)‖
‖x− y‖

/
mK(ϕ)
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Table 5.1
Measures of approximation stability for (5.6)

Λ(Φ6) E1,40(Φ6) E2,40,10(Φ6)
3.0575574308 0.7485506872 0.6626332145

Again we expect E2,K,L(Φn) ≤ 1, and a very small value of E2,K,L(Φn) indicates
that (5.4) might be violated. For each Φn which we calculate we will always report
E1,K(Φn) and E2,K,L(Φn). For larger K and L we will get a more accurate test of
the conditions (5.3) and (5.4), but the cost of calculation is rising, the complexity to
calculate E2,K,L(Φn) for example is O(n3K2L3). For our numerical results we will
use K = 40 and L = 10.

We consider only starlike examples for Ω, with ∂Ω given as

ϕ (x) = ρ (x)x, x ∈ S2

= ρ̂ (θ, φ) (sin θ cosφ, sin θ sinφ, cos θ)(5.5)

ρ̂ (θ, φ) = ρ (sin θ cosφ, sin θ sinφ, cos θ)

To create an initial guess, we begin with the generalization of (2.1)-(2.2) to three
dimensions, defined in the following way:

Φ̃ (x) = rρ̂ (θ, φ) (sin θ cosφ, sin θ sinφ, cos θ)

= ρ̂ (θ, φ)x

for x = r (sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ r ≤ 1. We
assume ρ : S2 → ∂Ω is a given smooth positive function. The initial guess Φ(0)n is
obtained using (5.1)-(5.2), the orthogonal projection of Φ̃ into Πn. Even though Φ̃ is
not continuously differentiable over B3, its orthogonal projection Φ

(0)
n is continuously

differentiable, and it turns out to be a suitable initial guess with Φ(0)n
∣∣∣
S2
≈ ϕ.

Example 5.1. In our first example we choose

(5.6) ρ̂(θ, φ) := 2 + (cos θ)
2

Using n = 6 yields the results given in Table 5.1 for the mapping Φ6 obtained using
the optimization procedure described above.

See Figure 5.1 for an illustration of the images of the various spheres i
4S

2. In
this example the initial mapping Φ(0)n turned out to be a local optimum, so after the
first iteration the optimization stopped. The measures E1 and E2 seem to indicate
that the function Φ(0)n is into Ω and injective. The error of Φ6 on the boundary is
zero.

Example 5.2. Again the boundary ∂Ω is given by (5.5), but this time we choose

(5.7) ρ̂(θ, φ) := 2 + cos θ +
1

2
sin θ sinφ

Using n = 6 gives us the results shown in Table 5.2. We let Φ
(0)
6 denote our initial

guess for the iteration, derived as discussed earlier.
See Figure 5.2 for an illustration of the images of the various spheres i

4S
2. In

this example the Λ(·) value of the initial mapping Φ
(0)
6 is significantly improved by the
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Fig. 5.1. Images of i
4
S2, i = 1, 2, 3, 4

Table 5.2
Measures of approximation stability for (5.7)

Function Λ(·) E1,40(·) E2,40,10(·)
Φ
(0)
6 394.3717406299 0.2088413520 0.5926402745

Φ6 43.8782117161 0.2018029407 0.5175844592

optimization. During the optimization the measures E1 and E2 do not approach zero,
which indicates that Φ6 is a mapping from B3 into Ω and is injective. The error of
Φ
(0)
6 and Φ6 on the boundary is zero.
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