ONE-DIMENSIONAL WAVE
EQUATION

The model initial boundary value problem con-
sists of the PDE

0%u 02w

— = a—-= , O<z<L,t>0

Ot2 Ox2 T
the boundary conditions

’U,(O,t) — gl(t)a ’U,(L,t) — gQ(t)a t 2 O
and the initial conditions

’U,(ZIZ,O) — ’U,O(ZU), ’U,t(ZIZ,O) — UO(:U)7 0<z<L

We will solve the initial boundary value problem
for 0 <t <T.

The given data are: coefficient a > O, interval
lengths L > 0 and T > 0, function f(x,t) for
O0<z<Land 0<t<T, functions ug(z) and
vo(x) for 0 < z < L, functions ¢g1(¢t) and g>(t)
for 0 <t <T.



Like for the one-dimensional heat equation, we
can consider semi-discrete and fully discrete
methods. Here, we focus on a standard fully
discrete scheme for the initial value problem of
the one-dimensional wave equation.

We use the same notations for the partitions
of the spatial and time intervals introduced in
solving the one-dimensional heat equation:

ht:T/’l’Lt, tk:(k_l)ht71§k§nt+l

Denote by uf the finite difference approxima-
tion value of u(x;, t).



We use the three point central difference ap-
proximations for the second-order partial deriva-
tives:

k k k
82u(x. t) A Uy — 2uf Fui g
ox2 " h%
02u uf_l—l -2 uf + uf_l

ﬁ(-’ﬁiatk) R

Then for 2 << ng 2<k<ns, we obtain the
difference equation
k41 — k k k

_ k

These difference equations are supplemented
by numerical boundary values

k k
ug = g1(tg),  up 11 = go(tr)

for 1 < kK < ng+ 1, and by numerical initial
values.



Discretization of the first initial condition

u(z,0) =ug(r), 0<z<L
IS straightforward:

1

u; =ug(z;), 1<i<ng+1

For the second initial condition

’U,t(ZIZ,O) — UO(:U)7 0<z<L

both the forward difference and backward dif-
ference lead to first-order accuracy in time step-
size, O(ht). So we introduce artificial variables
u?, 1 <1 < ng+ 1, intended as approxima-
tions of u(x;, —ht) when the true solution u is
suitably extended for negative t. Then we use

’U,(CIZi, ht) — ’U,(CIZi, _ht)
2 hy

as an O(h?) approximation of us(z;,0). So the
discretization of the second initial condition is

’LL-2—uO

L L= o), 1<i<n 1
2 hy O( z) <t < ng+




With the use of the artificial variables 49, 1 <
t < ng + 1, we need difference equations at
(z;,0) for 2 <i<ngz. So we require the differ-
ence equation

k+1 — k k k
h? h2 '

to be valid also for k=1 (i.e. t = 0).

Denote the ratio v = ah?/h2. Then from the
difference equations for kK = 1:

uf =~yui 1 +2(1 —y)u} +'yu7;1+1 —ud +nifl

and from the discretization of the second initial
condition:

uf = ug + 2 hyvo(z;)

Adding the two equations, we can eliminate uY
to get

>
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uf = > uj_14(1—7) Uz1‘|‘§ u7;1+1+htvo(fvi)+§tfz‘1

where u; = ug(x;).



Summarizing, we use the following steps to
determine the numerical solution:

First,

uj = ug(z;), 1<i<ng+1

Second,

U% = g1(ht), U%ﬁ_l = g2(ht)

u? = T uo(ei-1) + (1 = 7) uo(a;)

Y hi .1
+ 5 ug(w;41) + hevo(x;) + o fi
2 < i< ng

Finally, for k = 2,--- , ny,
1
uf T = g1(khe),  wfTl = go(k i)
1
uf T =l + 21 = ) uf +yufy

k—1 2 rk
—u; T+ hif;
2<i1< ng



Stability and Convergence

It can be shown that the stability condition is
v<1,i.e.,

\/aht < hg

This condition is not as restrictive as that for
the case of solving the one-dimensional heat
equation (ahs < h2/2).

Under the stability condition, when the true so-
lution u has several continuous partial deriva-
tives, a theoretical result on the error bound
IS
L max fulas, te) = uf| = O(h7 + h7)
1<k<n;+1
i.e., the scheme is of second order in both =z
and t stepsizes.



Numerical Example

Consider the following initi
problem:

( 82 82
8t§ =~ S+2etsing, e (0,7), te(0,1),
Xr

u(x,0) =sinz, w(z,0) = —sinzx, =z € [0,n],
| ©(0,t) =u(m,t) =0, tel0,1].

al-boundary value

The true solution is u(z,t) = e~ tsinz, and is
shown in the following figure.
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We solve the problem with (ng,n:) = (5,5),
(10,10) and (20,20). The numerical results
with (ng,nt) = (20,20) are shown in the figure.

Solution: ht:0.0SOO hX:O.1571 Error: ht=0.0500 hX=O.1571
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To see more clearly the error behavior, we pro-
vide in the following table the maximum nu-

merical solution errors

max  |u(x;, tr) — uf|

1<i<ng+1

at t, = 0.2,0.4,0.6,0.8,1. We observe that
the ratios are all close to 4, indicating a con-
vergence order of two for the method.

t n=2>5 n=10 Ratio n =20 Ratio
0.2 1.82E—-3 4.72E—4 3.87 1.17TE—4 4.02
0.4 4.49E-3 1.17E-3 3.85 2.91E—4 4.01
0.6 7.72E—3 2.01E—-3 3.84 5.02E—4 4.01
0.8 1.13E—2 2.94E-3 3.83 7.34E—4 4.01
1.0 1.49E-3 3.89E—-3 3.83 9.69E—4 4.01




