CLASSIFICATION OF
SECOND-ORDER PDES

Recall: the algebraic equation

A:z:z—I—Bxy—I—C’y2+D:z:+Ey+F=O

represents a (possibly degenerate) conic sec-
tion. Denote the discriminant A = B2—-4 AC.
Then the equation represents

an ellipse, if A <0
a parabola, if A =0

a hyperbola, if A >0



Consider a second order partial differential equa-
tion of two independent variables

Auge + Buzy + Cuyy = F(x,y,u, uz, uy)
with constants A, B and C, and function
F(x,y,u,p,q).

For the PDE, again define the discriminant
A = B2 _-4AC. Then the PDE is

elliptic, if A <O
parabolic, if A =0

hyperbolic, if A >0

For parabolic and hyperbolic PDEs, one of the
independent variables, say y, will be replaced
by t and can be usually interpreted as a time
variable.



REPRESENTATIVE
SECOND-ORDER PDES

We will discuss some finite difference schemes
for solving the following representative second-
order PDEs.

Poisson equation:

82’& 8211, 2
8x2+8y2 = f(z,y), (z,y) €QCR
where €2 is an open, bounded, connected pla-

nar region. This equation is elliptic.

The important special case with f(x,y) =0 is
called the Laplace equation:
92u n 92%u
ox2 = Oy2

=0, (z,y)€QCR?

For both equations, need additional conditions
on the boundary 0€2 to uniquely determine a
solution.



Heat equation:

ou  0%u
aza@—l—f(a},t), QZG(O,L), t>0

where, a and L are positive constants.

To determine a unique solution, need addi-
tional conditions on the boundary defined by
=0 and x = L, and an initial condition

’U,(ZU,O) — UO(SIZ), S [OaL]

Wave equation:

02 02
8T;=aa—a;—l—f(w,t), z € (0,L), t>0

Again, a and L are positive constants.

To determine a unique solution, need addi-
tional conditions on the boundary defined by
r =0 and x = L, and two initial conditions

u(z,0) = uo(z), ut(x,0) =wvo(z), = €[0,L]

Two initial conditions are needed since the PDE
IS second-order in t.



POISSON EQUATION

We will focus on the boundary value problem
for the Poisson equation
02u  H2%u
= f(x,y), x,y) € L2
52 T . f(z,y),  (z,y)
together with the Dirichlet boundary condition

u(z,y) = g(z,y), (x,y) € o2

Boundary conditions involving first order par-
tial derivatives of the unknown function are
also possible.

In the following, we derive a finite difference
scheme for solving the boundary value prob-
lem. The derivation is done for the case of a
square: Q2 = (0,1) x (0,1). The idea of the
derivation can be applied to more general (2.
Note that the boundary 02 consists of four
line segments, which are the four sides of the
square.



Finite Difference Grid

We first introduce a finite difference grid for
Q = [0,1] x [0,1]. Divide the x interval [0, 1]
into n, equal parts and denote h; = 1/n, the
x stepsize. Similarly, we divide the y interval
[0, 1] into ny equal parts and denote hy = 1/ny
the y stepsize. Then the grid points are

(z5,95), 1<i<ng+1, 1<j<ny+1




Five Point Scheme

Consider the differential equation at an interior
grid point (z;,y;), 2 <i < ng, 2 <j <ny. Use
the three-point central difference to approxi-
mate the second derivative:

@(x. U:) A u(@it1,¥5) — 2u(z;, y5) + ulwi—1,y5)
oz "7 h2
82“(3;- N u(zi, Yj41) — 2u(®i, y5) + ulwi, yj-1)
92 71 Ui h2

Denote fz] = f(xz-,yj), and by Uy the finite
difference approximation of u(z;,y;). Then we
have the following difference equations at the
interior grid points:

Uik, = 2 Wi F Wim1,j | Uil T2 Wit Ui
h32 h2
= fijy 2< 1< ng, 2< 7 < ny

(1)



These equations are supplemented by the dis-
crete Dirichlet boundary conditions:

Ui = Gij> 1 =1 0or np + 1, orjzlorny+1

(2)

We can then use the boundary conditions (2)
in the difference equations (1) to obtain a lin-
ear system for the unknowns wu;; for 2 <i < ng,
2 <7< ny.

It can be shown that the method is second-
order accurate:
max  |u(zi, y;) — uij| = O(hZ + h2)

1<i<ng+1
1<5<ny+1

assuming the solution u(x,y) has several con-
tinuous partial derivatives.



Implementation

The resulting linear system from the five point
scheme can be solved by direct methods (Gaus-
sian elimination method and its variants), as
well as iterative methods. The form of the
five point scheme is natural for the application
of an iterative method.

For simplicity in writing, consider the particular
case ngy = ny = n, hy = hy = h. Then the
difference equation (1) can be rewritten as

2
Uid 1,5 T Ui—15 T U 41 T U -1 — Fu; j =h fij
215,35 n
or

h2
— fi

1
Ui =, (ig1jtwi—1 jtu; jp1+u;j—1)— 2 Ji

2<i,j<n



An application of Gauss-Seidel iteration method
is: given an initial guess {’u,(l-)}QSi’an, for k =

1,2,---, determine {u( +1)}2§i,j§n recursively
by

fore=2,...,n
for y =2,...,n

WD = L) D B
t,J

,J z—|—1 .J U; 1 .J +1
2
(k+1 h
,J+1)) _fm
end
end

When ¢ or jis 1 or n+4+ 1, the boundary condi-

tion is used: u(’];_i'l) = g j-



EXAMPLE

Consider the boundary value problem

( 82u 82’(1, 2 . .

{ 52 + 992 = —27x<sin(wx) sin(wy)
0 <z,y<1,

u(z,y) =0, xz=0,1ory=0,1.

The true solution is

u(x,y) = sin(wx) sin(wy)

and it is shown in the figure below.

the true solution




We use the five point scheme to solve the prob-
lem. The numerical results with n = 16 are

given in the figure.

Solution: h=0.0625 Error: h=0.0625

The numerical solution




Maximum errors max ulx;, vy;) — w;;| for
1§i,j§n—|—1| ( zay]) z]|

various n are listed in the following table.

n  Max Error Ratio

4 5.3029E — 2

8 1.2951E -2 4.09
16 3.2190E -3 4.02
32 8.0347E -4 4.01

Notice that as the value n is doubled, i.e. the
grid size h is halved, the maximum error is re-
duced by a factor of approximately 4. This
confirms the theoretical error bound of order
two.



To see more precisely the error behavior, we
calculate the solution errors at six selective
node points, and the corresponding ratios. The
six points are Py = (1/4,1/4), P, = (1/2,1/4),
P3=(3/4,1/4), P4 = (1/4,1/2), Ps =(1/2,1/2),
and Pg = (1/4,3/4).

n—=24 n=38 R n=16 R
P1 -2.65E-2 -6.4BE-3 4.09 -1.61E-3 4.02
P>, -3.75E-2 -9.16E-3 4.09 -2.28E-3 4.02
P3 -2.65E-2 -6.48E-3 4.09 -1.61E-3 4.02
P, -3.75E-2 -9.16E-3 4.09 -2.28E-3 4.02
Ps -5.30E-2 -1.30E-2 4.09 -3.22E-3 4.02
Ps -2.65E-2 -6.48E-3 4.09 -1.61E-3 4.02

Again, notice that the ratios are all close to 4.



It is possible to do extrapolation to improve the
efficiency. Under certain smoothness assump-
tions on the solution, the following asymptotic
error expansion can be proved:

w(zs,y;) — ui; = h2D(z4,y;) + O(RY)  (3)

for any grid point (z;,y;). Here D(z,y) de-
notes some function determined from a bound-
ary value problem involving v in the data.

Denoting uy(xz,y) for the numerical solution at
a grid point (x,y) with the grid size h, we
rewrite (3) as

w(wi, y;) — up(xs, y;) = h2D(zy,y5) + O(h*) (4)



If (x,y) is a grid point corresponding to the
grid size 2h, then it is a grid point also with
the grid size h. From (4) we have

w(z,y) —up(x,y) = h?D(z,y) + O(h*)
w(z,y) — uop(z,y) = (2R)?D(z,y) + O(h*)

Eliminating the term D(z,y) from the two re-
lations, we obtain

u(z,y) — @p(x, y) = O(h*)

where uy; is the extrapolated solution defined
by
4uh($7y) T ’UQh($,y)
3
i.e., without much additional effort, we obtain

a fourth-order method.

up(z,y) =



Extrapolated solution errors for the boundary
value problem being solved are given in the
next table.

n =38 n=16 R
P; 2.04E—4 1.25E-5 16.35
P, 2.89E—4 1.77E-5 16.35
P3 2.04E—4 1.25E-5 16.35
P, 2.89E—4 1.77E-5 16.35
Ps 4.09E—4 2.50E-5 16.35
Ps 2.04E—4 1.25E-5 16.35

Let us compare the accuracy of the extrap-
olated solution with the five point difference
solution. Take n = 16 as an example. We
notice that, at the six selected points, the er-
rors of the extrapolated solution are around
2 x 10~2, whereas that of the difference solu-
tion are around —2x10-3. In other words, here
with extrapolation, for comparable amount of
calculations, the accuracy of the numerical so-
lution is increased about 100 times.



