
DIFFERENTIAL EQUATIONS

A principal model of physical phenomena.

The equation:

y′ = f(x, y)

The initial value:

y(x0) = Y0

Find solution Y (x) on some interval x0 ≤ x ≤ b. To-

gether these two conditions constitute an initial value

problem.

We will study methods for solving systems of first or-

der equations, but we begin with a single equation.

Many of the crucial ideas in the numerical analysis

arise from properties of the original equation.



SPECIAL CASES

1. y′(x) = λy(x) + b(x), x ≥ x0;

f(x, z) = λz + b(x).

General solution:

Y (x) = ceλx +
∫ x
x0

eλ(x−t)b(t)dt

with c arbitrary. With y(x0) = Y0,

Y (x) = Y0e
λ(x−x0) +

∫ x
x0

eλ(x−t)b(t)dt

2. y′(x) = ay (x)2; f(x, z) = az2.

General solution:

Y (x) =
−1

ax+ c
, c arbitrary

With y(x0) = Y0, use

c = −ax0 −
1

Y0



3. y′(x) = − [y(x)]2 + y(x); f(x, z) = −z2 + z.

General solution:

Y (x) =
1

1 + ce−x

4. “Separable equations”: y′(x) = g(y(x))h(x);

f(x, z) = g(z)h(x).

General solution: Write

1

g(y)

dy

dx
= h(x)

Let z = y(x), dz = y′(x)dx. Evaluate the inte-

grals in ∫
dz

g(z)
=
∫
h(x)dx

Replace z by Y (x) and solve for Y (x), if possible.



DIRECTION FIELDS

At each point (x, y) at which the function f is defined,

evaluate it to get f(x, y). Then draw in a small line

segment at this point with slope f(x, y). With enough

of these, we have a picture of how the solutions behave

for the differential equation

y′ = f(x, y)

Consider the differential equation

y′ = −y + 2 cosx

We can draw direction fields by hand by the method

described above, by using the Matlab program given in

the book; or we can use the Matlab program provided

in the class account.
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Direction field for y′ = −y + 2 cosx. Also shown are

example solution curves



SOLVABILITY THEORY

Consider whether there is a function Y (x) which sat-

isfies

y′ = f(x, y), x ≥ x0, y(x0) = Y0 (1)

Assume there is some open set D that is subset of the

xy-plane and that contains (x0, Y0), for which:

1. If two points (x, y) and (x, z) are contained in D,

then the line segment joining them is also contained

in D.

2. f(x, y) is continuous for all points (x, y) contained

in D.

3. ∂f(x, y)/∂y is continuous for all points (x, y) con-

tained in D.

Then there is an interval [c, d] containing x0 and there

is a unique function Y (x) defined on [c, d] which sat-

isfies (1), with the graph of Y (x) contained in D.



THE LIPSCHITZ CONDITION

The preceding condition on the partial derivative of f
is an easy way to specify that the following condition
is satisfied. It is the condition that is really needed.
The Lipschitz condition: There is a non-negative con-
stant K for which

|f(x, y)− f(x, z)| ≤ K |y − z|
for all points (x, y), (x, z) in the region D. In practice,
we use

K = max
(x,y)∈D

∣∣∣∣∣∂f(x, y)

∂y

∣∣∣∣∣
The Lipschitz condition occurs throughout our treat-
ment of both the theory of differential equations and
the theory of the numerical methods for their solution.

For this course, we simplify matters by assuming

K = max
−∞<y<∞
x0≤x≤b

∣∣∣∣∣∂f(x, y)

∂y

∣∣∣∣∣ <∞
with [x0, b] the interval on which we are solving the
initial value problem.



EXAMPLE

Let α > 0 be a given constant, and consider solving

y′ =
2x

α2
y2, x ≥ 0, y(0) = 1

Then the partial derivative is

fy(x, y) =
4xy

α2

and fy(0, 1) = 0. Thus fy(x, y) is small for (x, y) near

to (0, 1), and it is continuous for all (x, y). Choose

D = {(x, y) : |x| ≤ 1, |y| ≤ B}

for some B > 0. Then there is a solution Y (x) on

some interval [c, d] containing x0 = 0. How big is

[c, d]? In this case,

Y (x) =
α2

α2 − x2
, −α < x < α

If α is small, then the interval is small.



IMPROVED SOLVABILITY THEORY

Assume there is a Lipschitz constant K for which f

satisfies

|f(x, y)− f(x, z)| ≤ K |y − z|

for all (x, y), (x, z) satisfying

x0 ≤ x ≤ b, −∞ < y, z <∞

Then the initial value problem

y′ = f(x, y), x0 ≤ x0 ≤ b, y(x0) = Y0

has a solution Y (x) on the entire interval [x0, b].

Example: Consider y′ = y+g(x) with g(x) continuous

for all x. Then

y′ = y + g(x), y(x0) = Y0

has a solution Y (x) has a unique continuous solution

for −∞ < x <∞.



STABILITY

The concept of stability refers in a loose sense to what

happens to the solution Y (x) of an initial value prob-

lem if we make a small change in the data, which

includes both the differential equation and the initial

value.

If small changes in the data lead to large changes in

the solution, then we say the initial value problem is

unstable or ill-conditioned ; whereas if small changes

in the data lead to small changes in the solution, we

call the problem stable or well-conditioned.



EXAMPLE

Consider solving

y′ = 100y − 101e−x, y(0) = 1 (2)

This has a solution of Y (x) = e−x.

Now consider the perturbed problem

y′ = 100y − 101e−x, y(0) = 1 + ε

where ε is some small number. The solution of this is

Yε(x) = e−x + εe100x, and

Yε(x)− Y (x) = εe100x

Thus Yε(x) − Y (x) increases very rapidly as x in-

creases, and we say (2) is an “unstable”or “ill-conditioned”

problem.


