
THE EIGENVALUE PROBLEM

Let A be an n� n square matrix. If there is a number
� and a column vector v 6= 0 for which

Av = �v

then we say � is an eigenvalue of A and v is an associated
eigenvector. Note that if v is an eigenvector, then any
nonzero multiple of v is also an eigenvector for the same
eigenvalue �.

Example: Let

A =

"
1:25 0:75
0:75 1:25

#
(1)

The eigenvalue-eigenvector pairs for A are

�1 = 2; v(1) =

"
1
1

#

�2 = 0:5; v(2) =

"
�1
1

# (2)



Eigenvalues and eigenvectors are often used to give addi-
tional intuition to the function

F (x) = Ax; x 2 Rn or Cn

Example. The eigenvectors in the preceding example (2)
form a basis for R2. For x = [x1; x2]T ,

x = c1v
(1) + c2v

(2)

c1 =
x1 + x2
2

; c2 =
x2 � x1
2

Using (2), the function

F (x) = Ax; x 2 R2

can be written as

F (x) = c1Av
(1) + c2Av

(2)

= 2c1v
(1) +

1

2
c2v

(2); x 2 R2

The eigenvectors provide a better way to understand the
meaning of F (x) = Ax.

See the following Figure 1 and Figure 2.



Figure 1: Decomposition of x

Figure 2: Decomposition of Ax



How to calculate � and v? Rewrite Av = �v as

(�I �A)v = 0; v 6= 0 (3)

a homogeneous system of linear equations with the coef-
�cient matrix �I � A and the nonzero solution v. This
can be true if and only if

f(�) � det(�I �A) = 0

The function f(�) is called the characteristic polynomial
of A, and its roots are the eigenvalues of A.
Assuming A has order n,

f(�) = �n + �n�1�
n�1 + � � �+ �1�+ �0 (4)

For the case n = 2,

f(�) = det

"
�� a11 �a12
�a21 �� a22

#
= (�� a11)(�� a22)� a21a12
= �2 � (a11 + a22)�+ a11a22 � a21a12

The formula (4) shows that a matrix A of order n can
have at most n distinct eigenvalues.



Example. Let

A =

264 �7 13 �16
13 �10 13

�16 13 �7

375 (5)

Then

f(�) = det

264 �+ 7 �13 16
�13 �+ 10 �13
16 �13 �+ 7

375
= �3 + 24�2 � 405�+ 972

is the characteristic polynomial of A.

The roots are

�1 = �36; �2 = 9; �3 = 3 (6)



Finding an eigenvector. For � = �36, �nd an
associated eigenvector v by solving (�I�A)v = 0, which
becomes

(�36I �A)v = 0264 �29 �13 16
�13 �26 �13
16 �13 �29

375
264 v1v2
v3

375 =
264 00
0

375
If v1 = 0, then the only solution is v = 0. Thus v1 6= 0,
and we arbitrarily choose v1 = 1. This leads to the
system

�13v2 + 16v3 = 29
�26v2 � 13v3 = 13
�13v2 � 29v3 = �16

The solution is v2 = �1, v3 = 1. Thus the
eigenvector v for � = �36 is

v(1) = [1;�1; 1]T (7)

or any nonzero multiple of this vector.



SYMMETRIC MATRICES

Recall that A symmetric means AT = A, assuming that
A contains only real number entries. Such matrices are
very common in applications.

Example. A general 3� 3 symmetric matrix looks like

A =

264 a b c
b d e
c e f

375
A general n � n matrix A =

h
ai;j

i
is symmetric if and

only if

ai;j = aj;i; 1 � i; j � n

Following is a very important set of results for symmetric
matrices, explaining much of their special character.



THEOREM. Let A be a real, symmetric, n � n ma-
trix. Then there is a set of n eigenvalue-eigenvector pairs
f�i; v(i)g, 1 � i � n that satisfy the following proper-
ties.

(i) The numbers �1; �2; : : : ; �n are all of the roots of
the characteristic polynomial f(�) of A, repeated
according to their multiplicity. Moreover, all the �i
are real numbers.

(ii) If the column matrices v(i), 1 � i � n are regarded
as vectors in n-dimensional space, then they are mu-
tually perpendicular and of length 1:

v(i)Tv(j) = 0; 1 � i; j � n; i 6= j
v(i)Tv(i) = 1; 1 � i � n



(iii) For each column vector x = [x1; x2; : : : ; xn]T, there
is a unique choice of constants c1; : : : ; cn for which

x = c1v
(1) + � � �+ cnv(n)

The constants are given by

ci =
nX
j=1

xjv
(i)
j = xTv(i); 1 � i � n

where v(i) = [v(i)1 ; : : : ; v
(i)
n ]

T.

(iv) De�ne the matrix U of order n by

U = [v(1); v(2); : : : ; v(n)] (8)

Then

UTAU = D �

26664
�1 0 � � � 0
0 �2

. . . ...
... . . . . . . 0
0 � � � 0 �n

37775
and

UUT = UTU = I (9)

A = UDUT is a useful decomposition of A.



Example. Recall

A =

"
1:25 0:75
0:75 1:25

#
and its eigenvalue-eigenvector pairs

�1 = 2; v(1) =

"
1
1

#

�2 = 0:5; v(2) =

"
�1
1

#
Figure 1 illustrates that the eigenvectors are perpendic-
ular. To have them be of length 1, replace the above
by

�1 = 2; v(1) =

264 1p
2
1p
2

375

�2 = 0:5; v(2) =

264 �1p
2
1p
2

375
that are multiples of the original v(i).



The matrix U of (8) is given by

U =

264 1p
2

�1p
2

1p
2

1p
2

375

Easily, UTU = I.

Also,

UTAU

=

264 1p
2

1p
2

�1p
2

1p
2

375 " 1:25 0:75

0:75 1:25

# 264 1p
2

�1p
2

1p
2

1p
2

375
=

"
2 0

0 0:5

#
as speci�ed in (9).



NONSYMMETRIC MATRICES

Nonsymmetric matrices have a wide variety of possible
behaviour. We illustrate with two simple examples some
of the possible behaviour.

Example. We illustrate the existence of complex eigen-
values. Let

A =

"
0 1

�1 0

#
The characteristic polynomial is

f(�) = det

"
� �1
1 �

#
= �2 + 1

The roots of f(�) are complex,

�1 = i �
p
�1; �2 = �i

and corresponding eigenvectors are

v(1) =

"
i
�1

#
; v(2) =

"
i
1

#



Example. For A an n � n nonsymmetric matrix, there
may not be n independent eigenvectors. Let

A =

264 a 1 0
0 a 1
0 0 a

375
where a is a constant.

Then � = a is the eigenvalue of A with multiplicity 3,
and any associated eigenvector must be of the form

v = c [1; 0; 0]T

for some c 6= 0.

Thus, up to a nonzero multiplicative constant, we have
only one eigenvector,

v = [1; 0; 0]T

for the three equal eigenvalues �1 = �2 = �3 = a.



THE POWER METHOD

This numerical method is used primarily to �nd the eigen-
value of largest magnitude, if such exists.

We assume that the eigenvalues f�1; : : : ; �ng of an n�n
matrix A satisfy

j�1j > j�2j � � � � � j�nj (10)

Denote the eigenvector for �1 by v(1). We de�ne an
iteration method for computing improved estimates of
�1 and v(1).

Choose z(0) � v(1), usually chosen randomly. De�ne

w(1) = Az(0)

Let �1 be the maximum component of w(1), in size. If
there is more than one such component, choose the �rst
such component as �1. Then de�ne

z(1) =
1

�1
w(1)



Repeat the process iteratively. De�ne

w(m) = Az(m�1) (11)

Let �m be the maximum component of w(m), in size.
De�ne

z(m) =
1

�m
w(m) (12)

for m = 1; 2; : : : Then, roughly speaking, the vectors
z(m) will converge to some multiple of v(1).

To �nd �1 by this process, also pick some nonzero com-
ponent of the vectors z(m) and w(m), say component k;
and �x k. Often this is picked as the maximal component
of z(l), for some large l. De�ne

�
(m)
1 =

w
(m)
k

z
(m�1)
k

; m = 1; 2; : : : (13)

where z(m�1)k denotes component k of z(m�1).

It can be shown that �(m)1 converges to �1 as m!1.



Example. Recall the earlier exampleA =
"
1:25 0:75
0:75 1:25

#
.

Double precision was used in the computation, with rounded
values shown in the table given here.

Table 1: Power method example

m z
(m)
1 z

(m)
2 �

(m)
1 �

(m)
1 � �(m�1)1 Ratio

0 1:0 :5
1 1:0 :84615 1:62500
2 1:0 :95918 1:88462 2:60E � 1
3 1:0 :98964 1:96939 8:48E � 2 0:33
4 1:0 :99740 1:99223 2:28E � 2 0:27
5 1:0 :99935 1:99805 5:82E � 3 0:26
6 1:0 :99984 1:99951 1:46E � 3 0:25
7 1:0 :99996 1:99988 3:66E � 4 0:25

Note that in this example, �1 = 2 and v(1) = [1; 1]T ,
and the numerical results are converging to these
values.
The column of successive di¤erences �(m)1 ��(m�1)1 and
their successive ratios are included to show that there is
a regular pattern to the convergence.



CONVERGENCE

Assume A is a real n� n matrix.

It can be shown, by induction, that

z(m) = �m �
Amz(0)

kAmz(0)k
; m � 1 (14)

where �m = �1.

Further assume that the eigenvalues f�1; : : : ; �ng satisfy
(10), and also that there are n corresponding eigenvectorsn
v(1); : : : ; v(n)

o
that form a basis for Rn.

Thus

z(0) = c1v
(1) + � � �+ cnv(n) (15)

for some choice of constants fc1; : : : ; cng.

Assume c1 6= 0, something that a truly random choice of
z(0) will usually guarantee.



Apply A to z(0) in (15), to get

Az(0) = c1Av
(1) + � � �+ cnAv(n)

= �1c1v
(1) + � � �+ �ncnv(n)

Apply A repeatedly to get

Amz(0) = �m1 c1v
(1) + � � �+ �mn cnv(n)

= �m1

"
c1v

(1) +

 
�2
�1

!m
c2v

(2) + � � �+
 
�n

�1

!m
cnv(n)

#
From (14),

z(m) = �m

 
�1
j�1j

!m
�

c1v
(1) +

 
�2
�1

!m
c2v

(2) + � � �+
 
�n

�1

!m
cnv(n)




c1v(1) +

 
�2
�1

!m
c2v

(2) + � � �+
 
�n

�1

!m
cnv(n)







(16)

As m! 1, the terms (�j=�1)m ! 0, for 2 � j � n,
with (�2=�1)m the largest. Also,

�m

 
�1
j�1j

!m
= �1



Thus as m ! 1, most terms in (16) are converging
to zero. Cancel c1 from numerator and denominator,
obtaining

z(m) � �̂m
v(1)

kv(1)k
where �̂m = �1.

If the normalization of z(m) is modi�ed, to always have
some particular component be positive, then

z(m) ! � v(1)


v(1)


 � v̂(1) (17)

with a �xed sign independent of m. Our earlier normal-
ization of sign, dividing by �m, will usually accomplish
this, but not always.

The error in z(m) will satisfy

kz(m) � v̂(1)k � c
������2�1

�����
m

; m � 0 (18)

for some constant c > 0.



CONVERGENCE OF �(m)1

A similar convergence analysis can be given for
�
�
(m)
1

�
,

with the same kind of error bound.

Moreover, if we also assume

j�1j > j�2j > j�3j � j�4j � � � � � j�nj � 0 (19)

then

�1 � �
(m)
1 � c

 
�2
�1

!m
(20)

for some constant c, as m!1.

The error decreases geometrically with a ratio of �2=�1.

In the earlier example with A =

"
1:25 0:75
0:75 1:25

#
,

�2=�1 = 0:5=2 = :25

which is the ratio observed in Table 1.



Example. Consider the symmetric matrix

A =

264 �7 13 �16
13 �10 13

�16 13 �7

375
From earlier, the eigenvalues are

�1 = �36; �2 = 9; �3 = 3

The eigenvector v(1) associated with �1 is

v(1) = [1;�1; 1]T

The results of using the power method are shown in the
following Table 2.

Note that the ratios of the successive di¤erences of �(m)1
are approaching

�2
�1
= �0:25

Also note that location of the maximal component of
z(m) changes from one iteration to the next.

The initial guess z(0) was chosen closer to v(1) than
would be usual in actual practice. It was so chosen for
purposes of illustration.



Table 2: Power method example

m z
(m)
1 z

(m)
2 z

(m)
3

0 1:000000 �0:800000 0:900000
1 �0:972477 1:000000 �1:000000
2 1:000000 �0:995388 0:993082
3 0:998265 �0:999229 1:000000
4 1:000000 �0:999775 0:999566
5 0:999891 �0:999946 1:000000
6 1:000000 �0:999986 0:999973
7 0:999993 �0:999997 1:000000

m �
(m)
1 �

(m)
1 � �(m�1)1 Ratio

1 �31:80000
2 �36:82075 �5:03E + 0
3 �35:82936 9:91E � 1 �0:197
4 �36:04035 �2:11E � 1 �0:213
5 �35:99013 5:02E � 2 �0:238
6 �36:00245 �1:23E � 2 �0:245
7 �35:99939 3:06E � 3 �0:249



AITKEN EXTRAPOLATION

From (20),

�1 � �
(m+1)
1 � r(�1 � �

(m)
1 ); r = �2=�1 (21)

for large m. Choose r using

r �
�
(m+1)
1 � �(m)1

�
(m)
1 � �(m�1)1

(22)

as with Aitken extrapolation in § 3.4 on linear iteration
methods.

Using this r, solve for �1 in (21),

�1 �
1

1� r

�
�
(m+1)
1 � r�(m)1

�
= �

(m+1)
1 +

r

1� r

�
�
(m+1)
1 � �(m)1

� (23)

This is Aitken�s extrapolation formula. It also gives us
the Aitken error estimate

�1 � �
(m+1)
1 � r

1� r

�
�
(m+1)
1 � �(m)1

�
(24)



Example. In Table 2, take m+1 = 7. Then (24) yields

�1 � �
(7)
1 � r

1� r

�
�
(7)
1 � �(6)1

�
=

�0:249
1 + 0:249

[0:00306]
:
= �0:00061

which is the actual error.

Also the Aitken formula (23) will give the exact answer
for �1, to seven signi�cant digits.


