
LINEAR SYSTEMS

Consider the following example of a linear system:

x1 + 2x2 + 3x3 = −5
−x1 + x3 = −3

3x1 + x2 + 3x3 = −3

Its unique solution is

x1 = 1, x2 = 0, x3 = −2

In general we want to solve n equations in n un-

knowns. For this, we need some simplifying nota-

tion. In particular we introduce arrays. We can think

of these as means for storing information about the

linear system in a computer. In the above case, we

introduce

A =

 1 2 3
−1 0 1

3 1 3

 , b =

 −5
−3
−3

 , x =

 1
0
−2





These arrays completely specify the linear system and

its solution. We also know that we can give mean-

ing to multiplication and addition of these quantities,

calling them matrices and vectors. The linear system

is then written as

Ax = b

with Ax denoting a matrix-vector multiplication.

The general system is written as

a1,1x1 + · · ·+ a1,nxn = b1
...

an,1x1 + · · ·+ an,nxn = bn

This is a system of n linear equations in the n un-

knowns x1, ..., xn. This can be written in matrix-

vector notation as

Ax = b

A =

 a1,1 · · · a1,n
... . . . ...

an,1 · · · an,n

 , b =

 b1
...
bn

 x =

 x1
...
xn





A TRIDIAGONAL SYSTEM

Consider the tridiagonal linear system

3x1 − x2 = 2
−x1 + 3x2 − x3 = 1

...
−xn−2 + 3xn−1 − xn = 1
−xn−1 + 3xn = 2

The solution is

x1 = · · · = xn = 1

This has the associated arrays

A =


3 −1 0 · · · 0
−1 3 −1 0

. . .
... −1 3 −1
0 · · · −1 3

 , b =


2
1
...
1
2

 , x =


1
1
...
1
1





SOLVING LINEAR SYSTEMS

Linear systems Ax = b occur widely in applied math-

ematics. They occur as direct formulations of “real

world” problems; but more often, they occur as a part

of the numerical analysis of some other problem. As

examples of the latter, we have the construction of

spline functions, the numerical solution of systems of

nonlinear equations, ordinary and partial differential

equations, integral equations, optimization problems,

graph theory, search algorithms.

There are many ways of classifying linear systems.

Size: Small, moderate, and large. This of course

varies with the machine you are using. Most PCs

are now being sold with a memory of 1-8 gigabytes

(Gb). My seven year old HP Quadcore has 8 Gb of

main memory.



For a matrix A of order n× n, it will take 8n2 bytes

to store it in double precision. Thus a matrix of order

50,000 will need around 20 Gb of storage. The latter

would be too large for most present day PCs if the

matrix was to be stored in the computer’s memory;

although one can easily expand a PC to contain much

more memory than this.

Sparse vs. Dense. Many linear systems have a matrix

A in which almost all the elements are zero. These

matrices are said to be sparse. For example, it is quite

common to work with tridiagonal matrices

A =


a1 c1 0 · · · 0
b2 a2 c2 0 ...
0 b3 a3 c3
... . . .
0 · · · bn an


in which the order is 104 or much more. For such

matrices, it does not make sense to store the zero ele-

ments; and the sparsity should be taken into account

when solving the linear system Ax = b. Also, the

sparsity need not be as regular as in this example.



BASIC DEFINITIONS & THEORY

A homogeneous linear system Ax = b is one for which

the right hand constants are all zero. Using vector

notation, we say b is the zero vector for a homo-

geneous system. Otherwise the linear system is call

non-homogeneous.

Theorem. The following are equivalent statements.

(1) For each b, there is exactly one solution x.

(2) For each b, there is a solution x.

(3) The homogeneous system Ax = 0 has only the

solution x = 0.

(4) det (A) 6= 0.

(5) A−1 exists. [The matrix inverse and determinant

are introduced in §6.2, but they belong as a part of

this theorem.]



EXAMPLE. Consider again the tridiagonal system

3x1 − x2 = 2
−x1 + 3x2 − x3 = 1

...
−xn−2 + 3xn−1 − xn = 1
−xn−1 + 3xn = 2

The homogeneous version is simply

3x1 − x2 = 0
−x1 + 3x2 − x3 = 0

...
−xn−2 + 3xn−1 − xn = 0
−xn−1 + 3xn = 0

Assume x 6= 0, and therefore that x has nonzero com-

ponents. Let xk denote a component of maximum

size:

|xk| = max
1≤j≤n

∣∣∣xj∣∣∣



Consider now equation k, and assume 1 < k < n.

Then

−xk−1 + 3xk − xk+1 = 0

xk = 1
3

(
xk−1 + xk+1

)
|xk| ≤ 1

3

(∣∣xk−1
∣∣ +

∣∣xk+1
∣∣)

≤ 1
3 (|xk|+ |xk|)

= 2
3 |xk|

This implies xk = 0, and therefore x = 0. A similar

proof is valid if k = 1 or k = n, using the first or the

last equation, respectively.

Thus the original tridiagonal linear system Ax = b has

a unique solution x for each right side b.



METHODS OF SOLUTION

There are two general categories of numerical methods

for solving Ax = b.

Direct Methods: These are methods with a finite

number of steps; and they end with the exact solution

x, provided that all arithmetic operations are exact.

The most used of these methods is Gaussian elimi-

nation, which we begin with. There are other direct

methods, especially for sparse systems, but we do not

study them here.

Iteration Methods: These are used in solving all types

of linear systems, but they are most commonly used

with large sparse systems, especially those produced

by discretizing partial differential equations. This is

an active area of research.



MATRICES in Matlab

Consider the matrices

A =

 1 2 3
2 2 3
3 3 3

 , b =

 1
1
1


In MATLAB, A can be created as follows.

A = [1 2 3; 2 2 3; 3 3 3];
A = [1, 2, 3; 2, 2, 3; 3, 3, 3];
A = [1 2 3

2 2 3
3 3 3] ;

Commas can be used to replace the spaces. The vec-

tor b can be created by

b = ones(3, 1);



Consider setting up the matrices for the system

Ax = b with

Ai,j = max {i, j} , bi = 1, 1 ≤ i, j ≤ n

One way to set up the matrix A is as follows:

A = zeros(n, n);
for i = 1 : n

A(i, 1 : i) = i;
A(i, i+ 1 : n) = i+ 1 : n;

end

and set up the vector b by

b = ones(n, 1);


