
ERROR IN LINEAR INTERPOLATION

Let P1(x) denote the linear polynomial interpolating

f(x) at x0 and x1, with f(x) a given function (e.g.

f(x) = cosx). What is the error f(x)− P1(x)?

Let f(x) be twice continuously differentiable on an in-

terval [a, b] which contains the points {x0, x1}. Then
for a ≤ x ≤ b,

f(x)− P1(x) =
(x− x0) (x− x1)

2
f 00(cx)

for some cx between the minimum and maximum of

x0, x1, and x.

If x1 and x are ‘close to x0’, then

f(x)− P1(x) ≈
(x− x0) (x− x1)

2
f 00(x0)

Thus the error acts like a quadratic polynomial, with

zeros at x0 and x1.



EXAMPLE

Let f(x) = log10 x; and in line with typical tables of

log10 x, we take 1 ≤ x, x0, x1 ≤ 10. For definiteness,
let x0 < x1 with h = x1 − x0. Then

f 00(x) = −log10 e
x2

log10 x− P1(x) =
(x− x0) (x− x1)

2

"
−log10 e

c2x

#

= (x− x0) (x1 − x)

"
log10 e

2c2x

#
We usually are interpolating with x0 ≤ x ≤ x1; and

in that case, we have

(x− x0) (x1 − x) ≥ 0, x0 ≤ cx ≤ x1



(x− x0) (x1 − x) ≥ 0, x0 ≤ cx ≤ x1

and therefore

(x− x0) (x1 − x)

"
log10 e

2x21

#
≤ log10 x− P1(x)

≤ (x− x0) (x1 − x)

"
log10 e

2x20

#

For h = x1 − x0 small, we have for x0 ≤ x ≤ x1

log10 x− P1(x) ≈ (x− x0) (x1 − x)

"
log10 e

2x20

#

Typical high school algebra textbooks contain tables

of log10 x with a spacing of h = .01. What is the

error in this case? To look at this, we use

0 ≤ log10 x− P1(x) ≤ (x− x0) (x1 − x)

"
log10 e

2x20

#



By simple geometry or calculus,

max
x0≤x≤x1

(x− x0) (x1 − x) ≤ h2

4

Therefore,

0 ≤ log10 x− P1(x) ≤
h2

4

"
log10 e

2x20

#
.
= .0543

h2

x20

If we want a uniform bound for all points 1 ≤ x0 ≤ 10,
we have

0 ≤ log10 x− P1(x) ≤
h2 log10 e

8

.
= .0543h2

0 ≤ log10 x− P1(x) ≤ .0543h2

For h = .01, as is typical of the high school text book

tables of log10 x,

0 ≤ log10 x− P1(x) ≤ 5.43× 10−6



If you look at most tables, a typical entry is given to

only four decimal places to the right of the decimal

point, e.g.

log 5.41
.
= .7332

Therefore the entries are in error by as much as .00005.

Comparing this with the interpolation error, we see the

latter is less important than the rounding errors in the

table entries.

From the bound

0 ≤ log10 x− P1(x) ≤
h2 log10 e

8x20

.
= .0543

h2

x20

we see the error decreases as x0 increases, and it is

about 100 times smaller for points near 10 than for

points near 1.



AN ERROR FORMULA:

THE GENERAL CASE

Recall the general interpolation problem: find a poly-

nomial Pn(x) for which deg(Pn) ≤ n

Pn(xi) = f(xi), i = 0, 1, · · · , n
with distinct node points {x0, ..., xn} and a given
function f(x). Let [a, b] be a given interval on which

f(x) is (n+ 1)-times continuously differentiable; and

assume the points x0, ..., xn, and x are contained in

[a, b]. Then

f(x)−Pn(x) = (x− x0) (x− x1) · · · (x− xn)

(n+ 1)!
f (n+1) (cx)

with cx some point between the minimum and maxi-

mum of the points in {x, x0, ..., xn}.



f(x)−Pn(x) = (x− x0) (x− x1) · · · (x− xn)

(n+ 1)!
f (n+1) (cx)

As shorthand, introduce

Ψn(x) = (x− x0) (x− x1) · · · (x− xn)

a polynomial of degree n+ 1 with roots {x0, ..., xn}.
Then

f(x)− Pn(x) =
Ψn(x)

(n+ 1)!
f (n+1) (cx)



THE QUADRATIC CASE

For n = 2, we have

f(x)− P2(x) =
(x− x0) (x− x1) (x− x2)

3!
f (3) (cx)

(*)

with cx some point between the minimum and maxi-

mum of the points in {x, x0, x1, x2}.

To illustrate the use of this formula, consider the case

of evenly spaced nodes:

x1 = x0 + h, x2 = x1 + h

Further suppose we have x0 ≤ x ≤ x2, as we would

usually have when interpolating in a table of given

function values (e.g. log10 x). The quantity

Ψ2(x) = (x− x0) (x− x1) (x− x2)

can be evaluated directly for a particular x.



Graph of

Ψ2(x) = (x+ h)x (x− h)

using (x0, x1, x2) = (−h, 0, h):

x

y

h

-h



In the formula (∗), however, we do not know cx, and

therefore we replace
¯̄̄
f (3) (cx)

¯̄̄
with a maximum of¯̄̄

f (3) (x)
¯̄̄
as x varies over x0 ≤ x ≤ x2. This yields

|f(x)− P2(x)| ≤
|Ψ2(x)|
3!

max
x0≤x≤x2

¯̄̄
f (3) (x)

¯̄̄
(**)

If we want a uniform bound for x0 ≤ x ≤ x2, we must

compute

max
x0≤x≤x2

|Ψ2(x)| = max
x0≤x≤x2

|(x− x0) (x− x1) (x− x2)|

Using calculus,

max
x0≤x≤x2

|Ψ2(x)| =
2h3

3 sqrt(3)
, at x = x1±

h

sqrt(3)

Combined with (∗∗), this yields

|f(x)− P2(x)| ≤
h3

9 sqrt(3)
max

x0≤x≤x2

¯̄̄
f (3) (x)

¯̄̄
for x0 ≤ x ≤ x2.



For f(x) = log10 x, with 1 ≤ x0 ≤ x ≤ x2 ≤ 10, this
leads to

|log10 x− P2(x)| ≤
h3

9 sqrt(3)
· max
x0≤x≤x2

2 log10 e

x3

=
.05572h3

x30

For the case of h = .01, we have

|log10 x− P2(x)| ≤
5.57× 10−8

x30
≤ 5.57× 10−8



Question: How much larger could we make h so that

quadratic interpolation would have an error compa-

rable to that of linear interpolation of log10 x with

h = .01? The error bound for the linear interpolation

was 5.43× 10−6, and therefore we want the same to
be true of quadratic interpolation. Using a simpler

bound, we want to find h so that

|log10 x− P2(x)| ≤ .05572h3 ≤ 5× 10−6

This is true if h = .04477. Therefore a spacing of

h = .04 would be sufficient. A table with this spac-

ing and quadratic interpolation would have an error

comparable to a table with h = .01 and linear inter-

polation.



For the case of general n,

f(x)− Pn(x) =
(x− x0) · · · (x− xn)

(n+ 1)!
f (n+1) (cx)

=
Ψn(x)

(n+ 1)!
f (n+1) (cx)

Ψn(x) = (x− x0) (x− x1) · · · (x− xn)

with cx some point between the minimum and max-

imum of the points in {x, x0, ..., xn}. When bound-
ing the error we replace f (n+1) (cx) with its maximum

over the interval containing {x, x0, ..., xn}, as we have
illustrated earlier in the linear and quadratic cases.

Consider now the function

Ψn(x)

(n+ 1)!

over the interval determined by the minimum and

maximum of the points in {x, x0, ..., xn}. For evenly
spaced node points on [0, 1], with x0 = 0 and xn = 1,

we give graphs for n = 2, 3, 4, 5 and for n = 6, 7, 8, 9

on accompanying pages.



DISCUSSION OF ERROR

Consider the error

f(x)− Pn(x) =
(x− x0) · · · (x− xn)

(n+ 1)!
f (n+1) (cx)

=
Ψn(x)

(n+ 1)!
f (n+1) (cx)

Ψn(x) = (x− x0) (x− x1) · · · (x− xn)

as n increases and as x varies. As noted previously, we

cannot do much with f (n+1) (cx) except to replace it

with a maximum value of
¯̄̄
f (n+1) (x)

¯̄̄
over a suitable

interval. Thus we concentrate on understanding the

size of

Ψn(x)

(n+ 1)!



ERROR FOR EVENLY SPACED NODES

We consider first the case in which the node points

are evenly spaced, as this seems the ‘natural’ way to

define the points at which interpolation is carried out.

Moreover, using evenly spaced nodes is the case to

consider for table interpolation. What can we learn

from the given graphs?

The interpolation nodes are determined by using

h =
1

n
, x0 = 0, x1 = h, x2 = 2h, ..., xn = nh = 1

For this case,

Ψn(x) = x (x− h) (x− 2h) · · · (x− 1)
Our graphs are the cases of n = 2, ..., 9.



x

y n = 2

1
x

y n = 3

1

x

y n = 4

1

x

y n = 5

1

Graphs of Ψn(x) on [0, 1] for n = 2, 3, 4, 5



x

y n = 6

1

x

y n = 7

1

x

y n = 8

1

x

y n = 9

1

Graphs of Ψn(x) on [0, 1] for n = 6, 7, 8, 9



Graph of

Ψ6(x) = (x− x0) (x− x1) · · · (x− x6)

with evenly spaced nodes:

x
x0 x1 x2 x3 x4 x5 x6



Using the following table

,

n Mn n Mn

1 1.25E−1 6 4.76E−7
2 2.41E−2 7 2.20E−8
3 2.06E−3 8 9.11E−10
4 1.48E−4 9 3.39E−11
5 9.01E−6 10 1.15E−12

we can observe that the maximum

Mn ≡ max
x0≤x≤xn

|Ψn(x)|
(n+ 1)!

becomes smaller with increasing n.



From the graphs, there is enormous variation in the

size of Ψn(x) as x varies over [0, 1]; and thus there

is also enormous variation in the error as x so varies.

For example, in the n = 9 case,

max
x0≤x≤x1

|Ψn(x)|
(n+ 1)!

= 3.39× 10−11

max
x4≤x≤x5

|Ψn(x)|
(n+ 1)!

= 6.89× 10−13

and the ratio of these two errors is approximately 49.

Thus the interpolation error is likely to be around 49

times larger when x0 ≤ x ≤ x1 as compared to the

case when x4 ≤ x ≤ x5. When doing table inter-

polation, the point x at which you are interpolating

should be centrally located with respect to the inter-

polation nodes m{x0, ..., xn} being used to define the
interpolation, if possible.



AN APPROXIMATION PROBLEM

Consider now the problem of using an interpolation

polynomial to approximate a given function f(x) on

a given interval [a, b]. In particular, take interpolation

nodes

a ≤ x0 < x1 < · · · < xn−1 < xn ≤ b

and produce the interpolation polynomial Pn(x) that

interpolates f(x) at the given node points. We would

like to have

max
a≤x≤b |f(x)− Pn(x)|→ 0 as n→∞

Does it happen?

Recall the error bound

max
a≤x≤b |f(x)− Pn(x)|

≤ max
a≤x≤b

|Ψn(x)|
(n+ 1)!

· max
a≤x≤b

¯̄̄
f (n+1) (x)

¯̄̄
We begin with an example using evenly spaced node

points.



RUNGE’S EXAMPLE

Use evenly spaced node points:

h =
b− a

n
, xi = a+ ih for i = 0, ..., n

For some functions, such as f(x) = ex, the maximum
error goes to zero quite rapidly. But the size of the
derivative term f (n+1)(x) in

max
a≤x≤b |f(x)− Pn(x)|

≤ max
a≤x≤b

|Ψn(x)|
(n+ 1)!

· max
a≤x≤b

¯̄̄
f (n+1) (x)

¯̄̄
can badly hurt or destroy the convergence of other
cases.

In particular, we show the graph of f(x) = 1/
³
1 + x2

´
and Pn(x) on [−5, 5] for the cases n = 8 and n = 12.
The case n = 10 is in the text on page 127. It can
be proven that for this function, the maximum er-
ror on [−5, 5] does not converge to zero. Thus the
use of evenly spaced nodes is not necessarily a good
approach to approximating a function f(x) by inter-
polation.



Runge’s example with n = 10:

x

y

y=P10(x)

y=1/(1+x2)



OTHER CHOICES OF NODES

Recall the general error bound

max
a≤x≤b |f(x)− Pn(x)| ≤ max

a≤x≤b
|Ψn(x)|
(n+ 1)!

· max
a≤x≤b

¯̄̄
f (n+1) (x)

¯̄̄
There is nothing we really do with the derivative term

for f ; but we can examine the way of defining the

nodes {x0, ..., xn} within the interval [a, b]. We ask
how these nodes can be chosen so that the maximum

of |Ψn(x)| over [a, b] is made as small as possible.



This problem has quite an elegant solution, and it is

taken up in §4.6. The node points {x0, ..., xn} turn
out to be the zeros of a particular polynomial Tn+1(x)

of degree n+1, called a Chebyshev polynomial. These

zeros are known explicitly, and with them

max
a≤x≤b |Ψn(x)| =

µ
b− a

2

¶n+1
2−n

This turns out to be smaller than for evenly spaced

cases; and although this polynomial interpolation does

not work for all functions f(x), it works for all differ-

entiable functions and more.



ANOTHER ERROR FORMULA

Recall the error formula

f(x)− Pn(x) =
Ψn(x)

(n+ 1)!
f (n+1) (c)

Ψn(x) = (x− x0) (x− x1) · · · (x− xn)

with c between the minimum and maximum of {x0, ..., xn, x}.
A second formula is given by

f(x)− Pn(x) = Ψn(x) f [x0, ..., xn, x]

To show this is a simple, but somewhat subtle argu-

ment.

Let Pn+1(x) denote the polynomial of degree ≤ n+1

which interpolates f(x) at the points {x0, ..., xn, xn+1}.
Then

Pn+1(x) = Pn(x)

+f [x0, ..., xn, xn+1] (x− x0) · · · (x− xn)



Substituting x = xn+1, and using the fact that Pn+1(x)

interpolates f(x) at xn+1, we have

f(xn+1) = Pn(xn+1)

+f [x0, ..., xn, xn+1] (xn+1 − x0) · · · (xn+1 − xn)

f(xn+1) = Pn(xn+1)

+f [x0, ..., xn, xn+1] (xn+1 − x0) · · · (xn+1 − xn)

In this formula, the number xn+1 is completely ar-

bitrary, other than being distinct from the points in

{x0, ..., xn}. To emphasize this fact, replace xn+1 by
x throughout the formula, obtaining

f(x) = Pn(x) + f [x0, ..., xn, x] (x− x0) · · · (x− xn)

= Pn(x) +Ψn(x) f [x0, ..., xn, x]

provided x 6= x0, ..., xn.



The formula

f(x) = Pn(x) + f [x0, ..., xn, x] (x− x0) · · · (x− xn)

= Pn(x) +Ψn(x) f [x0, ..., xn, x]

is easily true for x a node point. Provided f(x) is

differentiable, the formula is also true for x a node

point.

This shows

f(x)− Pn(x) = Ψn(x) f [x0, ..., xn, x]

Compare the two error formulas

f(x)− Pn(x) = Ψn(x) f [x0, ..., xn, x]

f(x)− Pn(x) =
Ψn(x)

(n+ 1)!
f (n+1) (c)



Then

Ψn(x) f [x0, ..., xn, x] =
Ψn(x)

(n+ 1)!
f (n+1) (c)

f [x0, ..., xn, x] =
f (n+1) (c)

(n+ 1)!

for some c between the smallest and largest of the

numbers in {x0, ..., xn, x}.

To make this somewhat symmetric in its arguments,

let m = n+ 1, x = xn+1. Then

f [x0, ..., xm−1, xm] =
f (m) (c)

m!

with c an unknown number between the smallest and

largest of the numbers in {x0, ..., xm}. This was given
in an earlier lecture where divided differences were in-

troduced.


