
MULTIPLE ROOTS

We study two classes of functions for which there is

additional difficulty in calculating their roots. The first

of these are functions in which the desired root has a

multiplicity greater than 1. What does this mean?

Let α be a root of the function f(x), and imagine

writing it in the factored form

f(x) = (x− α)mh(x)

with some integer m ≥ 1 and some continuous func-
tion h(x) for which h(α) 6= 0. Then we say that α

is a root of f(x) of multiplicity m. For example, the

function

f(x) = ex
2 − 1

has x = 0 as a root of multiplicity m = 2. In partic-

ular, define

h(x) =
ex
2 − 1
x2

for x 6= 0.



Using Taylor polynomial approximations, we can show

for x 6= 0 that
h(x) ≈ 1 + 1

2x
2 + 1

6x
4

lim
x→0h(x) = 1

This leads us to extend the definition of h(x) to

h(x) =
ex
2 − 1
x2

, x 6= 0
h(0) = 1

Thus

f(x) = x2h(x)

as asserted and x = 0 is a root of f(x) of multiplicity

m = 2.

Roots for which m = 1 are called simple roots, and

the methods studied to this point were intended for

such roots. We now consider the case of m > 1.



If the function f(x) is m-times differentiable around

α, then we can differentiate

f(x) = (x− α)mh(x)

m times to obtain an equivalent formulation of what

it means for the root to have multiplicity m.

For an example, consider the case

f(x) = (x− α)3 h(x)

Then

f 0(x) = 3 (x− α)2 h(x) + (x− α)3 h0(x)
≡ (x− α)2 h2(x)

h2(x) = 3h(x) + (x− α)h0(x)
h2(α) = 3h(α) 6= 0

This shows α is a root of f 0(x) of multiplicity 2.

Differentiating a second time, we can show

f 00(x) = (x− α)h3(x)

for a suitably defined h3(x) with h3(α) 6= 0, and α is
a simple root of f 00(x).



Differentiating a third time, we have

f 000(α) = h3(α) 6= 0
We can use this as part of a proof of the following: α

is a root of f(x) of multiplicity m = 3 if and only if

f(α) = f 0(α) = f 00(α) = 0, f 000(α) 6= 0

In general, α is a root of f(x) of multiplicity m if and

only if

f(α) = · · · = f (m−1)(α) = 0, f (m)(α) 6= 0



DIFFICULTIES OF MULTIPLE ROOTS

There are two main difficulties with the numerical cal-

culation of multiple roots (by which we mean m > 1

in the definition).

1. Methods such as Newton’s method and the se-

cant method converge more slowly than for the

case of a simple root.

2. There is a large interval of uncertainty in the pre-

cise location of a multiple root on a computer or

calculator.

The second of these is the more difficult to deal with,

but we begin with the first for the case of Newton’s

method.



Recall that we can regard Newton’s method as a fixed

point method:

xn+1 = g(xn), g(x) = x− f(x)

f 0(x)
Then we substitute

f(x) = (x− α)mh(x)

to obtain

g(x) = x− (x− α)mh(x)

m (x− α)m−1 h(x) + (x− α)mh0(x)

= x− (x− α)h(x)

mh(x) + (x− α)h0(x)
Then we can use this to show

g0(α) = 1− 1

m
=

m− 1
m

For m > 1, this is nonzero, and therefore Newton’s

method is only linearly convergent:

α− xn+1 ≈ λ (α− xn) , λ =
m− 1
m

Similar results hold for the secant method.



There are ways of improving the speed of convergence

of Newton’s method, creating a modified method that

is again quadratically convergent. In particular, con-

sider the fixed point iteration formula

xn+1 = g(xn), g(x) = x−m
f(x)

f 0(x)
in which we assume to know the multiplicity m of

the root α being sought. Then modifying the above

argument on the convergence of Newton’s method,

we obtain

g0(α) = 1−m · 1
m
= 0

and the iteration method will be quadratically conver-

gent.

But this is not the fundamental problem posed by

multiple roots.



NOISE IN FUNCTION EVALUATION

Recall the discussion of noise in evaluating a function

f(x), and in our case consider the evaluation for val-

ues of x near to α. In the following figures, the noise

as measured by vertical distance is the same in both

graphs.
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Noise was discussed earlier in §2.2, and Figures 2.1
and 2.2 were of

f(x) = x3 − 3x2 + 3x− 1 ≡ (x− 1)3

Because of the noise in evaluating f(x), it appears

from the graph that f(x) has many zeros around x =

1, whereas the exact function outside of the computer

has only the root α = 1, of multiplicity 3.

Any rootfinding method to find a multiple root α that

uses evaluation of f(x) is doomed to having a large

interval of uncertainty as to the location of the root.

If high accuracy is desired, then the only satisfactory

solution is to reformulate the problem as a new prob-

lem F (x) = 0 in which α is a simple root of F . Then

use a standard rootfinding method to calculate α. It

is important that the evaluation of F (x) not involve

f(x) directly, as that is the source of the noise and

the uncertainly.



EXAMPLE

From the text, consider finding the roots of

f(x) = 2.7951− 8.954x+ 10.56x2 − 5.4x3 + x4

This has a root to the right of 1. From an exami-

nation of the rate of linear convergence of Newton’s

method applied to this function, one can guess with

high probability that the multiplicity is m = 3. Then

form exactly the second derivative

f 00(x) = 21.12− 32.4x+ 12x2

Applying Newton’s method to this with a guess of

x = 1 will lead to rapid convergence to α = 1.1.

In general, if we know the root α has multiplicitym >

1, then replace the problem by that of solving

f (m−1)(x) = 0

since α is a simple root of this equation.



STABILITY

Generally we expect the world to be stable. By this,
we mean that if we make a small change in something,
then we expect to have this lead to other correspond-
ingly small changes. In fact, if we think about this
carefully, then we know this need not be true. We
now illustrate this for the case of rootfinding.

Consider the polynomial

f(x) = x7 − 28x6 + 322x5 − 1960x4
+6769x3 − 13132x2 + 13068x− 5040

This has the exact roots {1, 2, 3, 4, 5, 6, 7}. Now con-
sider the perturbed polynomial

F (x) = x7 − 28.002x6 + 322x5 − 1960x4
+6769x3 − 13132x2 + 13068x− 5040

This is a relatively small change in one coefficient, of
relative error

−.002
−28 = 7.14× 10−5

What are the roots of F (x)?



Root of Root of Error
f(x) F (x)
1 1.0000028 −2.8E − 6
2 1.9989382 1.1E − 3
3 3.0331253 −0.033
4 3.8195692 0.180
5 5.4586758 + .54012578i −.46− .54i
6 5.4586758− .54012578i −.46 + .54i
7 7.2330128 −0.233

Why have some of the roots departed so radically from

the original values? This phenomena goes under a

variety of names. We sometimes say this is an example

of an unstable or ill-conditioned rootfinding problem.

These words are often used in a casual manner, but

they also have a very precise meaning in many areas

of numerical analysis (and more generally, in all of

mathematics).



A PERTURBATION ANALYSIS

We want to study what happens to the root of a func-

tion f(x) when it is perturbed by a small amount. For

some function g(x) and for all small ε, define a per-

turbed function

Fε(x) = f(x) + εg(x)

The polynomial example would fit this if we use

g(x) = x6, ε = −.002
Let α0 be a simple root of f(x). It can be shown (us-

ing the implicit differentiation theorem from calculus)

that if f(x) and g(x) are differentiable for x ≈ α0,

and if f 0(α0) 6= 0, then Fε(x) has a unique simple

root α(ε) near to α0 = α(0) for all small values of ε.

Moreover, α(ε) will be a differentiable function of ε.

We use this to estimate α(ε).



The linear Taylor polynomial approximation of α(ε) is

given by

α(ε) ≈ α(0) + εα0(0)

We need to find a formula for α0(0). Recall that

Fε(α(ε)) = 0

for all small values of ε. Differentiate this as a function

of ε and using the chain rule. Then we obtain

F 0ε(α(ε)) = f 0(α(ε))α0(ε)
+g(α(ε)) + ε g0(α(ε))α0(ε) = 0

for all small ε. Substitute ε = 0, recall α(0) = α0,

and solve for α0(0) to obtain

f 0(α0)α0(0) + g(α0) = 0

α0(0) = − g(α0)

f 0(α0)
This then leads to

α(ε) ≈ α(0) + εα0(0)

= α0 − ε
g(α0)

f 0(α0)
(*)



Example: In our earlier polynomial example, consider

the simple root α0 = 3. Then

α(ε) ≈ 3− ε
36

48

.
= 3− 15.2ε

With ε = −.002, we obtain
α(−.002) ≈ 3− 15.2(−.002) .

= 3.0304

This is close to the actual root of 3.0331253.

However, the approximation (*) is not good at esti-

mating the change in the roots 5 and 6. By ob-

servation, the perturbation in the root is a complex

number, whereas the formula (*) predicts only a per-

turbation that is real. The value of ε is too large to

have (*) be accurate for the roots 5 and 6.



DISCUSSION

Looking again at the formula

α(ε) ≈ α0 − ε
g(α0)

f 0(α0)
we have that the size of

ε
g(α0)

f 0(α0)
is an indication of the stability of the solution α0.

If this quantity is large, then potentially we will have

difficulty. Of course, not all functions g(x) are equally

possible, and we need to look only at functions g(x)

that will possibly occur in practice.

One quantity of interest is the size of f 0(α0). If it
is very small relative to εg(α0), then we are likely to

have difficulty in finding α0 accurately.


