
ROOTFINDING : A PRINCIPLE

We want to find the root α of a given function f(x).

Thus we want to find the point x at which the graph of

y = f(x) intersects the x-axis. One of the principles

of numerical analysis is the following.

If you cannot solve the given problem, then solve a

“nearby problem”.

How do we obtain a nearby problem for f(x) = 0?

Begin first by asking for types of problems which we

can solve easily. At the top of the list should be that

of finding where a straight line intersects the x-axis.

Thus we seek to replace f(x) = 0 by that of solv-

ing p(x) = 0 for some linear polynomial p(x) that

approximates f(x) in the vicinity of the root α.
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Given an estimate of α, say α ≈ x0, approximate f(x)

by its linear Taylor polynomial at (x0, f(x0)):

p(x) = f(x0) + (x− x0) f
0(x0)

If x0 is very close to α, then the root of p(x) should

be close to α. Denote this approximating root by x1;

repeat the process to further improve our estimate of

α.



To illustrate this procedure, we consider a well-known

example. For a number b > 0, consider solving the

equation

f(x) ≡ b− 1

x
= 0

The solution is, of course, α = 1/b. Nonetheless, bear

with the example as it has some practical application.
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Let x0 be an estimate of the root α = 1/b. Then the

line tangent to the graph of y = f(x) at (x0, f(x0))

is given by

p(x) = f(x0) + (x− x0) f
0(x0)

with

f 0(x) = 1

x2

Denoting the root of p(x) = 0 by x1, we solve for x1
in

f(x0) + (x1 − x0) f
0(x0) = 0

x1 = x0 −
f(x0)

f 0(x0)
For our particular case, this yields

x1 = x0 −
b− 1

x0
1

x20

= x0 − bx20 + x0

x1 = x0 (2− bx0)



x1 = x0 (2− bx0)

Note that no division is used in our final formula.

If we repeat the process, now using x1 as our initial

estimate of α, then we obtain a sequence of numbers

x1, x2, ...

xn+1 = xn (2− bxn) , n = 0, 1, 2, ...

Do these numbers xn converge to the root α? We

return to this after a bit.

This algorithm has been used in a practical way in a

number of circumstances.



The general Newton’s method for solving f(x) = 0 is

derived exactly as above. The result is a sequence of

numbers x0, x1, x2, ... defined by

xn+1 = xn − f(xn)

f 0(xn)
, n = 0, 1, 2, ...

Again, we want to know whether these numbers con-

verge to the desired root α; and we would also like

to know something about the speed of convergence

(which says something about how many such iterates

must actually be computed).

Return to the iteration

xn+1 = xn (2− bxn) , n = 0, 1, 2, ...

for solving

f(x) ≡ b− 1

x
= 0

We use a method of analysis which works for only

this example, and later we use another approach to

the general Newton’s method.



Write

xn+1 = xn (1 + rn) , rn = 1− bxn

Note that the error and relative error in xn are given

by

en =
1

b
− xn =

rn

b

rel (xn) =
en

α
=

rn

b
· b = rn

Thus rn is the relative error in xn, and we have xn

converges to α if and only if rn tends to zero.

We find a recursion formula for rn, recalling that rn =

1− bxn for all n. Then

rn+1 = 1− bxn+1
= 1− bxn (1 + rn)
= 1− (1− rn) (1 + rn)

= 1−
³
1− r2n

´
= r2n



Thus

rn+1 = r2n

for every integer n ≥ 0. Thus
r1 = r20, r2 = r21 = r40, r3 = r22 = r80

By induction, we obtain

rn = r2
n

0 , n = 0, 1, 2, 3, ...

We can use this to analyze the convergence of

xn+1 = xn (1 + rn) , rn = 1− bxn

In particular, we have rn→ 0 if and only if

|r0| < 1

This is equivalent to saying

−1 < 1− bx0 < 1

0 < x0 <
2

b



A look at a graph of f(x) ≡ b − 1
x will show the

reason for this condition. If x0 is chosen greater than
2
b, then x1 will be negative, which is unacceptable.

The interval

0 < x0 <
2

b

is called the ‘interval of convergence’. With most

equations, we cannot find this exactly, but rather only

some smaller subinterval which guarantees convergence.

Using rn+1 = r2n and rn = ben, we have

ben+1 = (ben)
2

en+1 = be2n

α− xn+1 = b (α− xn)
2

Methods with this type of error behaviour are said to

be quadratically convergent; and this is an especially

desirable behaviour.



To see why, consider the relative errors in the above.

Assume the initial guess x0 has been so chosen that

r0 = .1. Then

r1 = 10
−2, r2 = 10

−4, r3 = 10
−8, r4 = 10

−16

Thus very few iterates need be computed.

The iteration

xn+1 = xn (1 + rn) , rn = 1− bxn

has been used on a number of machines as a means

of doing division, of calculating 1/b.



NEWTON’S METHOD

For a general equation f(x) = 0, we assume we are

given an initial estimate x0 of the root α. The iterates

are generated by the formula

xn+1 = xn − f(xn)

f 0(xn)
, n = 0, 1, 2, ...

EXAMPLE Consider solving

f(x) ≡ x6 − x− 1 = 0
for its positive root α. An initial guess x0 can be

generated from a graph of y = f(x). The iteration is

given by

xn+1 = xn − x6n − xn − 1
6x5n − 1

, n ≥ 0

We use an initial guess of x0 = 1.5.



The column “xn − xn−1” is an estimate of the error
α− xn−1; justification is given later.

n xn f(xn) xn − xn−1 α− xn−1
0 1.5 8.89E + 1

1 1.30049088 2.54E + 1 −2.00E− 1 −3.65E− 1
2 1.18148042 5.38E− 1 −1.19E− 1 −1.66E− 1
3 1.13945559 4.92E− 2 −4.20E− 2 −4.68E− 2
4 1.13477763 5.50E− 4 −4.68E− 3 −4.73E− 3
5 1.13472415 7.11E− 8 −5.35E− 5 −5.35E− 5
6 1.13472414 1.55E− 15 −6.91E− 9 −6.91E− 9

As seen from the output, the convergence is very

rapid. The iterate x6 is accurate to the machine pre-

cision of around 16 decimal digits. This is the typical

behaviour seen with Newton’s method for most prob-

lems, but not all.



We could also have considered the problem of solving

the annuity equation

f(x) ≡ 1000
"µ
1 +

x

12

¶480
− 1

#

−5000
"
1−

µ
1 +

x

12

¶−240#
= 0

However, it turns out that you have to be very close to

the root in this case in order to get good convergence.

This phenomena is discussed further at a later time;

and the bisection method is preferable in this instance.



AN ERROR FORMULA

Suppose we use Taylor’s formula to expand f(α) about

x = xn. Then we have

f(α) = f(xn)+(α− xn) f
0(xn)+

1

2
(α− xn)

2 f 00(cn)

for some cn between α and xn. Note that f(α) = 0.

Then divide both sides of this equation by f 0(xn),
yielding

0 =
f(xn)

f 0(xn)
+ α− xn + (α− xn)

2 f 00(cn)
2f 0(xn)

Note that

f(xn)

f 0(xn)
− xn = −xn+1

and thus

α− xn+1 = −
f 00(cn)
2f 0(xn)

(α− xn)
2



For xn close to α, and therefore cn also close to α,

we have

α− xn+1 ≈ −
f 00(α)
2f 0(α)

(α− xn)
2

Thus Newton’s method is quadratically convergent,

provided f 0(α) 6= 0 and f(x) is twice differentiable in
the vicinity of the root α.

We can also use this to explore the ‘interval of con-

vergence’ of Newton’s method. Write the above as

α− xn+1 ≈M (α− xn)
2 , M = − f 00(α)

2f 0(α)
Multiply both sides by M to get

M (α− xn+1) ≈ [M (α− xn)]
2



M (α− xn+1) ≈ [M (α− xn)]
2

Then we want these quantities to decrease; and this

suggests choosing x0 so that

|M (α− x0)| < 1

|α− x0| <
1

|M | =
¯̄̄̄
¯2f 0(α)f 00(α)

¯̄̄̄
¯

If |M | is very large, then we may need to have a very
good initial guess in order to have the iterates xn

converge to α.



ADVANTAGES & DISADVANTAGES

Advantages: 1. It is rapidly convergent in most cases.

2. It is simple in its formulation, and therefore rela-

tively easy to apply and program.

3. It is intuitive in its construction. This means it is

easier to understand its behaviour, when it is likely to

behave well and when it may behave poorly.

Disadvantages: 1. It may not converge.

2. It is likely to have difficulty if f 0(α) = 0. This

condition means the x-axis is tangent to the graph of

y = f(x) at x = α.

3. It needs to know both f(x) and f 0(x). Contrast
this with the bisection method which requires only

f(x).


