ROOTFINDING

We want to find the numbers x for which f(x)=0, with f a given function. Here, we denote such roots or zeroes by the Greek letter α . Rootfinding problems occur in many contexts. Sometimes they are a direct formulation of some physical situation; but more often, they are an intermediate step in solving a much larger problem.

An example with annuities Suppose you are paying into an account an amount of P_{in} per period of time, for N_{in} periods of time. The amount you are deposited is compounded at at interest rate of r per period of time. Then at the beginning of period $N_{in}+1$, you will withdraw an amount of P_{out} per time period, for N_{out} periods. In order that the amount you withdraw balance that which has been deposited including interest, what is the needed interest rate? The equation is

$$P_{in} [(1+r)^{N_{in}} - 1] = P_{out} [1 - (1+r)^{-N_{out}}]$$

We assume the interest rate r holds over all $N_{in}+N_{out}$ periods.

As a particular case, suppose you are paying in $P_{in}=\$1,000$ each month for 40 years. Then you wish to withdraw $P_{out}=\$5,000$ per month for 20 years. What interest rate do you need? If the interest rate is R per year, compounded monthly, then r=R/12. Also, $N_{in}=40\cdot 12=480$ and $N_{out}=20\cdot 12=240$. Thus we wish to solve

$$1000 \left[\left(1 + \frac{R}{12} \right)^{480} - 1 \right] = 5000 \left[1 - \left(1 + \frac{R}{12} \right)^{-240} \right]$$

What is the needed yearly interest rate R? The answer is 2.92%. How did I obtain this answer?

This example also shows the power of compound interest.

THE BISECTION METHOD

Most methods for solving f(x) = 0 are iterative methods. We begin with the simplest of such methods, one which most people use at some time.

We assume we are given a function f(x); and in addition, we assume we have an interval [a,b] containing the root, on which the function is continuous. We also assume we are given an error tolerance $\varepsilon > 0$, and we want an approximate root $\tilde{\alpha}$ in [a,b] for which

$$|\alpha - \widetilde{\alpha}| \le \varepsilon$$

We further assume the function f(x) changes sign on [a,b], with

Algorithm **Bisect** (f, a, b, ε) . Step 1: Define

$$c = \frac{1}{2}(a+b)$$

Step 2: If $b-c \le \varepsilon$, accept c as our root, and then stop.

Step 3: If $b-c>\varepsilon$, then check compare the sign of f(c) to that of f(a) and f(b). If

$$\mathsf{sign}(f(b)) \cdot \mathsf{sign}(f(c)) \leq 0$$

then replace a with c; and otherwise, replace b with c. Return to Step 1.

Denote the initial interval by $[a_1,b_1]$, and denote each successive interval by $[a_j,b_j]$. Let c_j denote the center of $[a_j,b_j]$. Then

$$\left| \alpha - c_j \right| \le b_j - c_j = c_j - a_j = \frac{1}{2} \left(b_j - a_j \right)$$

Since each interval decreases by half from the preceding one, we have by induction,

$$|\alpha - c_n| \le \left(\frac{1}{2}\right)^n \left(b_1 - a_1\right)$$

EXAMPLE Find the largest root of

$$f(x) \equiv x^6 - x - 1 = 0$$

accurate to within $\epsilon=0.001$. With a graph, it is easy to check that $1<\alpha<2$. We choose $a=1,\ b=2$; then f(a)=-1,f(b)=61, and the requirement $f(a)\,f(b)<0$ is satisfied. The results from *Bisect* are shown in the table. The entry n indicates the iteration number n.

\overline{n}	\overline{a}	b	c	b-c	f(c)
1	1.0000	2.0000	1.5000	0.5000	8.8906
2	1.0000	1.5000	1.2500	0.2500	1.5647
3	1.0000	1.2500	1.1250	0.1250	-0.0977
4	1.1250	1.2500	1.1875	0.0625	0.6167
5	1.1250	1.1875	1.1562	0.0312	0.2333
6	1.1250	1.1562	1.1406	0.0156	0.0616
7	1.1250	1.1406	1.1328	0.0078	-0.0196
8	1.1328	1.1406	1.1367	0.0039	0.0206
9	1.1328	1.1367	1.1348	0.0020	0.0004
_10	1.1328	1.1348	1.1338	0.00098	-0.0096

Recall the original example with the function.

$$f(r) = P_{in} [(1+r)^{N_{in}} - 1] - P_{out} [1 - (1+r)^{-N_{out}}]$$

Checking, we see that f(0)=0. Therefore, with a graph of y=f(r) on [0,1], we see that f(x)<0 if we choose x very small, say x=.001. Also f(1)>0. Thus we choose [a,b]=[.001,1]. Using $\varepsilon=.000001$ yields the answer

$$\widetilde{\alpha} = .02918243$$

with an error bound of

$$|\alpha - c_n| \le 9.53 \times 10^{-7}$$

for n=20 iterates. We could also have calculated this error bound from

$$\frac{1}{220}(1 - .001) = 9.53 \times 10^{-7}$$

Suppose we are given the initial interval [a, b] = [1.6, 4.5] with $\varepsilon = .00005$. How large need n be in order to have

$$|\alpha - c_n| \le \varepsilon$$

Recall that

$$|\alpha - c_n| \le \left(\frac{1}{2}\right)^n (b-a)$$

Then ensure the error bound is true by requiring and solving

$$\left(\frac{1}{2}\right)^n (b-a) \le \varepsilon$$

$$\left(\frac{1}{2}\right)^n (4.5 - 1.6) \le .00005$$

Dividing and solving for n, we have

$$n \ge \log\left(\frac{2.9}{.00005}\right) = 15.82$$

Therefore, we need to take n=16 iterates.

ADVANTAGES AND DISADVANTAGES

Advantages: 1. It always converges.

- 2. You have a guaranteed error bound, and it decreases with each successive iteration.
- 3. You have a guaranteed rate of convergence. The error bound decreases by $\frac{1}{2}$ with each iteration.

Disadvantages: 1. It is relatively slow when compared with other rootfinding methods we will study, especially when the function f(x) has several continuous derivatives about the root α .

2. The algorithm has no check to see whether the ε is too small for the computer arithmetic being used. [This is easily fixed by reference to the *machine epsilon* of the computer arithmetic.]

We also assume the function f(x) is continuous on the given interval [a,b]; but there is no way for the computer to confirm this .